zbMATH — the first resource for mathematics

Cell-centered finite-volume method for heterogeneous anisotropic poromechanics problem. (English) Zbl 1423.76308
Summary: The article introduces a finite-volume method for the poromechanics problem for heterogeneous anisotropic media. The media are characterized by the full tensors of elasticity, permeability and Biot coefficient. The pressure and displacement unknowns are collocated at centers of cells. Poromechanics represents a multi-physics problem of Darcy flow and linear elasticity coupled via Biot terms. Based on the flux and the displacement and pressure continuity conditions we derive the coupled block expression for the flux. The flux expression is split into a block-harmonic part, a transversal part and an additional contribution due to gravity. The block-harmonic part is equivalent to the two-point flux approximation method for the Darcy problem. For the approximation of the transversal part, we derive an interpolation method for the coupled pressure and displacement fields, valid over discontinuities of the tensors. Finally, we derive the flux expression for generalized boundary conditions. The flux expression does not require introduction of auxiliary unknowns at the boundary. We evaluate the performance of the proposed method on a number of numerical tests and apply the method to a problem on a grid corresponding to a real oil field.

MSC:
 76M12 Finite volume methods applied to problems in fluid mechanics 74S10 Finite volume methods applied to problems in solid mechanics 74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.) 76S05 Flows in porous media; filtration; seepage
BiCGstab; INMOST
Full Text:
References:
 [1] Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 2, 155-164 (1941) · JFM 67.0837.01 [2] Coussy, O., Poromechanics (2004), John Wiley & Sons [3] Detournay, E.; Cheng, A. H.-D., Fundamentals of poroelasticity, (Analysis and Design Methods (1993), Elsevier), 113-171 [4] Garipov, T. T.; Karimi-Fard, M.; Tchelepi, H. A., Discrete fracture model for coupled flow and geomechanics, Comput. Geosci., 20, 1, 149-160 (2016) · Zbl 1392.76079 [5] Badia, S.; Quaini, A.; Quarteroni, A., Coupling Biot and Navier-Stokes equations for modelling fluid – poroelastic media interaction, J. Comput. Phys., 228, 21, 7986-8014 (2009) · Zbl 1391.74234 [6] Jha, B.; Juanes, R., Coupled multiphase flow and poromechanics: A computational model of pore pressure effects on fault slip and earthquake triggering, Water Resour. Res., 50, 5, 3776-3808 (2014) [7] Castelletto, N.; Gambolati, G.; Teatini, P., A coupled MFE poromechanical model of a large-scale load experiment at the coastland of Venice, Comput. Geosci., 19, 1, 17-29 (2015) [8] Teatini, P.; Ferronato, M.; Gambolati, G.; Gonella, M., Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: Modeling the past occurrence and the future trend, Water Resour. Res., 42, 1 (2006) [9] Dana, S.; Wheeler, M. F., Convergence analysis of fixed stress split iterative scheme for anisotropic poroelasticity with tensor Biot parameter, Comput. Geosci., 1-12 (2018) · Zbl 1406.65084 [10] Zienkiewicz, O. C., The Finite Element Method, Vol. 3 (1977), McGraw-hill London · Zbl 0435.73072 [11] Aziz, K.; Settari, A., Petroleum reservoir simulation (1979), Applied Science Publishers [12] Settari, A.; Aziz, K., Use of irregular grid in reservoir simulation, Soc. Pet. Eng. J., 12, 02, 103-114 (1972) [13] Garipov, T. T.; Hui, M., Simulation of coupled geomechanics and multiphase flow in naturally fractured reservoirs, (52nd US Rock Mechanics/Geomechanics Symposium (2018), American Rock Mechanics Association) [14] Castelletto, N.; White, J. A.; Ferronato, M., Scalable algorithms for three-field mixed finite element coupled poromechanics, J. Comput. Phys., 327, 894-918 (2016) · Zbl 1373.76312 [15] Naumovich, A., On finite volume discretization of the three-dimensional Biot poroelasticity system in multilayer domains, Comput. Methods Appl. Math., 6, 3, 306-325 (2006) · Zbl 1100.74060 [16] Gaspar, F. J.; Lisbona, F. J.; Vabishchevich, P. N., Staggered grid discretizations for the quasi-static biot’s consolidation problem, Appl. Numer. Math., 56, 6, 888-898 (2006) · Zbl 1091.76047 [18] Sokolova, I. V.; Bastisya, M. G.; Hajibeygi, H., Multiscale finite volume method for finite-volume-based simulation of poroelasticity, J. Comput. Phys., 379, 309-324 (2019) [19] Wheeler, M.; Xue, G.; Yotov, I., A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra, Numer. Math., 121, 1, 165-204 (2012) · Zbl 1277.65100 [20] Liu, R.; Wheeler, M. F.; Dawson, C. N.; Dean, R., Modeling of convection-dominated thermoporomechanics problems using incomplete interior penalty Galerkin method, Comput. Methods Appl. Mech. Engrg., 198, 9-12, 912-919 (2009) · Zbl 1229.76053 [21] Choo, J.; Lee, S., Enriched Galerkin finite elements for coupled poromechanics with local mass conservation, Comput. Methods Appl. Mech. Engrg., 341, 311-332 (2018) [22] Ganis, B.; Liu, R.; Wang, B.; Wheeler, M. F.; Yotov, I., Multiscale modeling of flow and geomechanics, Radon Ser. Comput. Appl. Math., 165-204 (2013) · Zbl 1302.76174 [23] Yoon, H. C.; Kim, J., Spatial stability for the monolithic and sequential methods with various space discretizations in poroelasticity, Internat. J. Numer. Methods Engrg., 114, 7, 694-718 (2018) [24] Luo, P.; Rodrigo, C.; Gaspar, F. J.; Oosterlee, C. W., Multigrid method for nonlinear poroelasticity equations, Comput. Vis. Sci., 17, 5, 255-265 (2015) · Zbl 1388.74013 [25] Nordbotten, J. M., Stable cell-centered finite volume discretization for Biot equations, SIAM J. Numer. Anal., 54, 2, 942-968 (2016) · Zbl 1382.76187 [26] Berge, R. L.; Berre, I.; Keilegavlen, E.; Nordbotten, J. M.; Wohlmuth, B., Finite volume discretization for poroelastic media with fractures modeled by contact mechanics (2019), arXiv preprint arXiv:1904.11916 [27] Preisig, M.; Prévost, J. H., Stabilization procedures in coupled poromechanics problems: A critical assessment, Int. J. Numer. Anal. Methods Geomech., 35, 11, 1207-1225 (2011) [28] Rodrigo, C.; Gaspar, F. J.; Hu, X.; Zikatanov, L. T., Stability and monotonicity for some discretizations of the Biot’s consolidation model, Comput. Methods Appl. Mech. Engrg., 298, 183-204 (2016) · Zbl 1425.74164 [29] Honório, H. T.; Maliska, C. R.; Ferronato, M.; Janna, C., A stabilized element-based finite volume method for poroelastic problems, J. Comput. Phys., 364, 49-72 (2018) · Zbl 1392.74090 [30] Garipov, T. T.; Zaslavsky, M. Yu.; Pergament, A. Kh., Mathematical modeling of filtration processes and poro-elasticity, Mat. Model., 17, 9, 113-128 (2005) · Zbl 1089.76522 [31] Dean, R. H.; Gai, X.; Stone, C. M.; Minkoff, S. E., A comparison of techniques for coupling porous flow and geomechanics, SPE J., 11, 01, 132-140 (2006) [32] Dana, S.; Wheeler, M. F., Convergence analysis of two-grid fixed stress split iterative scheme for coupled flow and deformation in heterogeneous poroelastic media, Comput. Methods Appl. Mech. Engrg., 341, 788-806 (2018) [33] Kim, J.; Tchelepi, H. A.; Juanes, R., Stability and convergence of sequential methods for coupled flow and geomechanics: Fixed-stress and fixed-strain splits, Comput. Methods Appl. Mech. Engrg., 200, 13-16, 1591-1606 (2011) · Zbl 1228.74101 [34] Léo, A.; Robert, E.; Raphaèl, H., A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media, (Comptes Rendus Mathematique, Vol. 347 (2009), Elsevier France: Elsevier France Paris), 673-676 · Zbl 1166.65051 [35] Terekhov, K. M.; Mallison, B. T.; Tchelepi, H. A., Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem, J. Comput. Phys., 330, 245-267 (2017) · Zbl 1380.65335 [36] Keyes, D. E.; McInnes, L. C.; Woodward, C.; Gropp, W.; Myra, E.; Pernice, M.; Bell, J.; Brown, J.; Clo, A.; Connors, J., Multiphysics simulations: Challenges and opportunities, Int. J. High Perform. Comput. Appl., 27, 1, 4-83 (2013) [37] Felippa, C. A.; Oñate, E., Stress, strain and energy splittings for anisotropic elastic solids under volumetric constraints, Comput. Struct., 81, 13, 1343-1357 (2003) [38] Terekhov, K.; Vassilevski, Yu., INMOST parallel platform for mathematical modeling and applications, (Russian Supercomputing Days (2018), Springer), 230-241 [39] Danilov, A. A.; Terekhov, K. M.; Konshin, I. N.; Vassilevski, Yu. V., Parallel software platform INMOST: a framework for numerical modeling, Supercomput. Front. Innov., 2, 4, 55-66 (2016) [40] Konshin, I.; Kapyrin, I.; Nikitin, K.; Terekhov, K., Application of the parallel INMOST platform to subsurface flow and transport modelling, (Parallel Processing and Applied Mathematics (2016), Springer), 277-286 [41] Vassilevski, Yu.; Konshin, I.; Kopytov, G.; Terekhov, K., INMOST - A Software Platform and a Graphical Environment for Development of Parallel Numerical Models on General Meshes (2013), Moscow State Univ. Publ.: Moscow State Univ. Publ. Moscow [42] Sleijpen, G. L.G.; Van der Vorst, H. A.; Fokkema, D. R., BiCGstab (l) and other hybrid Bi-CG methods, Numer. Algorithms, 7, 1, 75-109 (1994) · Zbl 0810.65027 [43] Kaporin, I. E., High quality preconditioning of a general symmetric positive definite matrix based on its UTU + UTR + RTU-decomposition, Numer. Linear Algebra Appl., 5, 6, 483-509 (1998) · Zbl 0969.65037 [44] Li, N.; Saad, Y.; Chow, E., Crout versions of ILU for general sparse matrices, SIAM J. Sci. Comput., 25, 2, 716-728 (2003) · Zbl 1042.65025 [45] Bollhöfer, M., A robust ILU with pivoting based on monitoring the growth of the inverse factors, Linear Algebra Appl., 338, 1, 201-218 (2001) · Zbl 0991.65028 [46] Olschowka, M.; Neumaier, A., A new pivoting strategy for Gaussian elimination, Linear Algebra Appl., 240, 131-151 (1996) · Zbl 0852.65021 [47] Eymard, R.; Henry, G.; Herbin, R.; Hubert, F.; Klöfkorn, R.; Manzini, G., 3D benchmark on discretization schemes for anisotropic diffusion problems on general grids, (Finite Volumes for Complex Applications VI Problems & Perspectives (2011), Springer), 895-930 · Zbl 1246.76053 [48] Babuška, I.; Suri, M., On locking and robustness in the finite element method, SIAM J. Numer. Anal., 29, 5, 1261-1293 (1992) · Zbl 0763.65085 [49] Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, Vol. 12 (1969), Gordon & Breach New York · Zbl 0184.52603 [50] Flemisch, B.; Flornes, K. M.; Lie, K.; Rasmussen, A., OPM: The open porous media initiative, (AGU Fall Meeting Abstracts (2011)) [51] Jameson, A., Analysis and design of numerical schemes for gas dynamics, 1: artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence, Int. J. Comput. Fluid Dyn., 4, 3-4, 171-218 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.