zbMATH — the first resource for mathematics

Martingale spaces and representations under absolutely continuous changes of probability. (English) Zbl 07126977
Summary: In a fully general setting, we study the relation between martingale spaces under two locally absolutely continuous probabilities and prove that the martingale representation property (MRP) is always stable under locally absolutely continuous changes of probability. Our approach relies on minimal requirements, is constructive and, as shown by a simple example, enables us to study situations which cannot be covered by the existing theory.
60G07 General theory of stochastic processes
60G44 Martingales with continuous parameter
60H05 Stochastic integrals
Full Text: DOI Euclid arXiv
[1] A. Aksamit, T. Choulli, and M. Jeanblanc. On an optional semimartingale decomposition and the existence of a deflator in an enlarged filtration. In C. Donati-Martin, A. Lejay, and A. Rouault, editors, In Memoriam Marc Yor — Séminaire de Probabilités XLVII, volume 2137 of Lecture Notes in Mathematics, pages 187-218. Springer, Cham, 2015. · Zbl 1336.60084
[2] S.N. Cohen and R.J. Elliott. Stochastic Calculus and Applications. Probability and its Applications. Birkhäuser, New York, second edition, 2015. · Zbl 1338.60001
[3] D. Duffie. Predictable representation of martingale spaces and changes of probability measures. In J. Azéma and M. Yor, editors, Séminaire de Probabilités XIX, volume 1123 of Lecture Notes in Mathematics, pages 278-284. Springer, Berlin-Heidelberg, 1985. · Zbl 0562.60055
[4] M.H.A. Davis and P. Varaiya. The multiplicity of an increasing family of \(\sigma \)-fields. Annals of Probability, 2(5):958-963, 1974. · Zbl 0292.60071
[5] C. Fontana. No-arbitrage conditions and absolutely continuous changes of measure. In C. Hillairet, M. Jeanblanc, and Y. Jiao, editors, Arbitrage, Credit and Informational Risks, volume 5 of Peking University Series in Mathematics, pages 3-18. World Scientific, Singapore, 2014. · Zbl 1325.91063
[6] C. Fontana. The strong predictable representation property in initially enlarged filtrations under the density hypothesis. Stochastic Processes and their Applications, 128(3):1007-1033, 2018. · Zbl 1391.60062
[7] S.W. He, J.G. Wang, and J.A. Yan. Semimartingale Theory and Stochastic Calculus. Kexue Chubanshe (Science Press), Beijing, 1992. · Zbl 0781.60002
[8] J. Jacod. Calcul Stochastique et Problèmes de Martingales, volume 714 of Lecture Notes in Mathematics. Springer, Berlin, 1979. · Zbl 0414.60053
[9] J. Jacod and A.N. Shiryaev. Limit Theorems for Stochastic Processes, volume 288 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin, second edition, 2003. · Zbl 1018.60002
[10] M. Jeanblanc and S. Song. Martingale representation property in progressively enlarged filtrations. Stochastic Processes and their Applications, 125(11):4242-4271, 2015. · Zbl 1328.60110
[11] M. Jeanblanc, M. Yor, and M. Chesney. Mathematical Methods for Financial Markets. Springer Finance. Springer, London, 2009. · Zbl 1205.91003
[12] D. Kramkov and S. Pulido. Density of the set of probability measures with the martingale representation property. Annals of Probability, 47(4):2563-2581, 2019. · Zbl 1451.60044
[13] E. Lenglart. Transformation des martingales locales par changement absolument continu de probabilités. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 39(1):65-70, 1977. · Zbl 0339.60045
[14] P.A. Meyer. Un cours sur les intégrales stochastiques. In P.A. Meyer, editor, Séminaire de Probabilités X, volume 511 of Lecture Notes in Mathematics, pages 245-400. Springer, Berlin-Heidelberg, 1976. · Zbl 0374.60070
[15] N. Perkowski and J. Ruf. Supermartingales as Radon-Nikodym densities and related measure extensions. Annals of Probability, 43(6):3133-3176, 2015. · Zbl 1356.60070
[16] G. Žitković. Financial equilibria in the semimartingale setting: complete markets and markets with withdrawal constraints. Finance and Stochastics, 10(1):99-119, 2006. · Zbl 1092.91065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.