×

zbMATH — the first resource for mathematics

The use of the Reynolds force vector in a physics informed machine learning approach for predictive turbulence modeling. (English) Zbl 07127217
Summary: Data-driven turbulence modeling is receiving considerable attention specially when Direct Numerical Simulations (DNS) are the physics-informed learning environment and Reynolds average Navier-Stokes (RANS) simulations are the injected environment. A caveat of such approach, is that some studies indicate the existence of an intrinsic error in the Reynolds stress tensor provided by reputable DNS databases that, although small, lead to a reconstructed mean velocity field with a flagrant inaccuracy. This fact imposes a huge challenge in data-driven and traditional RANS models and is becoming a concern in the very recent literature. In the present work, we propose to replace the Reynolds stress tensor by its divergence, the Reynolds force vector, as a target for the machine learning technique. Since the Reynolds force vector can be computed from first order statistics, this estimate is not contaminated by the errors associated with applying the divergence onto the Reynolds stress tensor available in the DNS databases, circumventing the problem exposed above. The turbulent flow through a square duct was chosen as the case to be analyzed. Employing a \(\kappa\)-\(\epsilon\) RANS model as injection environment, the non-persistence-of-straining tensor to compose the set of inputs, and a neural network architecture as the ML technique to bridge the injected and learning environments, we compared the proposed strategy with the approach commonly used in the literature, i.e., to correct the Reynolds stress tensor. The results demonstrate that the Reynolds force vector correction is able to reconstruct the mean velocity field with a higher fidelity with respect to the DNS data.
MSC:
76 Fluid mechanics
Software:
GitHub; Keras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andrade, J.; Martins, R.; Thompson, R.; Mompean, G.; Neto, A., Analysis of uncertainties and convergence of turbulent wall-bounded flows by means of a physically-based criterion, Phys Fluids, 30, 045106 (2018)
[2] Chaouat, B.; Schiestel, R., Progress in subgrid-scale transport modelling for continuous hybrid non-zonal RANS/LES simulations, Int J Heat Fluid Flow, 30, 602-616 (2009)
[3] Chollet F., et al. Keras. https://github.com/fchollet/keras; 2015.
[4] Cibenko, G., Approximation by superpositions of a sigmoidal function., Math Control Signals Syst, 2, 303-314 (1989) · Zbl 0679.94019
[5] Craft, T.; Launder, B.; Suga, K., Development and application of a cubic eddy-viscosity model of turbulence, Int J Heat Fluid Flow, 17, 108-115 (1996)
[6] Davidson, L.; Peng, S., Hybrid LES-RANS modelling: a one-equation SGS model combined with a k-epsilon model for predicting recirculating flows, Int J Numer Meth Fluids, 43, 1003-1018 (2003) · Zbl 1032.76574
[7] Druot, R., Definition du transport associe a un modele de fluide de deuxieme ordre, CR Acad Sci Paris Ser A, 282, 923-929 (1976)
[8] Duraisamy, K.; Iaccarino, G.; Xiao, H., Turbulence modeling in the age of data., Ann Rev Fluid Mech, 51, 357-377 (2019) · Zbl 1412.76040
[9] Edeling, W. N.; Cinnella, P.; Dwight, R. P., Predictive RANS simulations via Bayesian model-scenario averaging, J Comp Phys, 275, 65-91 (2014) · Zbl 1349.76106
[10] Edeling, W. N.; Cinnella, P.; Dwight, R. P.; Bijl, H., Bayesian estimates of parameter variability in the k-epsilon turbulence model., J Comp Phys, 258, 73-94 (2014) · Zbl 1349.76110
[11] Emory, M.; Larsson, J.; Iaccarino, G., Modeling of structural uncertainties in Reynolds-Averaged Navier-Stokes closures, Phys Fluids, 25, 110822 (2013)
[12] Flageul, C.; Tiselj, I., Convergence rate of individual and global quantities in direct numerical simulations, Phys Fluids, 30, 111704, 1-4 (2018)
[13] Friess, C.; Manceau, R.; Gatski, T. B., Toward an equivalence criterion for Hybrid RANS/LES methods, Comput Fluids, 20, 233-246 (2015) · Zbl 1390.76150
[14] Gavrilakis, S., Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct, J Fluid Mech, 244, 101-116 (1992)
[15] Gorlé, C.; Iaccarino, G., A framework for epistemic uncertainty quantification of turbulent scalar flux models for Reynolds-averaged Navier-Stokes simulations, Phys Fluids, 25, 055105, 1-21 (2013)
[16] 371-
[17] Iaccarino, G.; Mishra, A. A.; Ghili, S., Eigenspace perturbations for uncertainty estimation of single-point turbulence closures, Phys Rev Fluids, 2, 024605 (2017)
[18] Jiménez, J., Machine-aided turbulence theory, J Fluid Mech, 854, R1, 1-12 (2018) · Zbl 1415.76249
[19] Kutz, J., Deep learning in fluid dynamics, J Fluid Mech, 814, 1-4 (2017) · Zbl 1383.76380
[20] Launder, B.; Spalding, D., The numerical computation of turbulent flow computer methods, Comput Methods Appl Mech Eng, 3, 269-289 (1974) · Zbl 0277.76049
[21] Lee, C.; Kim, J.; Babcock, D.; Goodman, R., Application of neural networks to turbulence control for drag reduction, Phys Fluids, 9, 1740-1747 (1997)
[22] Ling, J.; Jones, R.; Templeton, J., Machine learning strategies for systems with invariance properties., J Comput Phys, 318, 22-35 (2016) · Zbl 1349.76124
[23] Ling, J.; Kurzawski, A.; Templeton, J., Reynolds averaged turbulence modelling using deep neural networks with embedded invariance, J Fluid Mech, 807, 155-166 (2016) · Zbl 1383.76175
[24] Ling, J.; Ruiz, A.; Lacanze, G.; Oefelein, J., Uncertainty analysis and data-driven model advances for a jet-in-crossflow., J Turbomach, 139, 021008, 1-9 (2016)
[25] Ling, J.; Templeton, J., Evaluation of machine learning algorithms for prediction of regions of high RANS uncertainty., Phys Fluids, 27, 085103 (2015)
[26] Margheri, L.; Meldi, M.; Salvetti, M.; Sagaut, P., Epistemic uncertainties in RANS model free coefficients, Comput Fluids, 102, 315-335 (2014) · Zbl 1391.76189
[27] Maulik, R.; San, O., A neural network approach for the blind deconvolution of turbulent ows, J Fluid Mech, 831, 151-181 (2017) · Zbl 1421.76134
[28] Milano, M.; Koumoutsakos, P., Neural network modeling for near wall turbulent flow, J Comput Phys, 182, 1-26 (2002) · Zbl 1090.76535
[29] Parish, E.; Duraisamy, K., A paradigm for data-driven predictive modeling using field inversion and machine learning., J Comput Phys, 305, 758-774 (2016) · Zbl 1349.76006
[30] Perot, B., Turbulence modeling using body force potentials, Phys Fluids, 11, 9, 2645-2656 (1999) · Zbl 1149.76511
[31] Perot, B.; Moin, P., A new approach to turbulence modeling, Tech. Rep. (1996), Stanford University
[32] Pinelli, A.; Uhlmann, M.; Sekimoto, A.; Kawahara, G., Reynolds number dependence of mean flow structure in square duct turbulence., J Fluid Mech, 644, 107-122 (2010) · Zbl 1189.76265
[33] Pope, S. B., A more general effective-viscosity hypothesis., J Fluid Mech, 72, 311-340 (1975) · Zbl 0315.76024
[34] Pope, S. B., Turbulent flows (2000), Cambridge University Press · Zbl 0966.76002
[35] Poroseva, S.; Colmenares, J.; Murman, S., On the accuracy of RANS simulations with DNS data, Phys Fluids, 28, 115102, 1-22 (2016)
[36] Raissi, M.; Karniadakis, G. E., Hidden physics models: machine learning of nonlinear partial differential equations, J Comput Phys, 357, 125-141 (2018) · Zbl 1381.68248
[37] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J Comput Phys, 378, 686-707 (2019) · Zbl 1415.68175
[38] Raissi, M.; Wang, Z.; Triantafyllou, M.; Karniadakis, G. E., Deep learning of vortex-induced vibrations, J Fluid Mech, 861, 119-137 (2019) · Zbl 1415.76177
[39] Sirignano, J.; Spiliopoulos, K., DGM: A deep learning algorithm for solving partial differential equations, J Comput Phys, 375, 1339-1364 (2018) · Zbl 1416.65394
[40] Smith, G. F., On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors, Int J Eng Sci, 9, 899-916 (1971) · Zbl 0233.15021
[41] Swischuk, R.; Mainini, L.; Peherstorfer, B.; Willcox, K., Projection-based model reduction: formulations for physics-based machine learning, Comp Fluids, In press (2019) · Zbl 1411.65061
[42] Thompson, R.; Mompean, G.; Thais, L., A methodology to quantify the non-linearity of the Reynolds stress tensor, J Turbul, 11, 1-27 (2010)
[43] Thompson, R. L., Some perspectives on the dynamic history of a material element., Int J Eng Sci, 46, 224-249 (2008) · Zbl 1213.74147
[44] Thompson, R. L.; de Souza Mendes, P. R., Persistence of straining and flow classification, Int J Eng Sci, 43, 79-105 (2005) · Zbl 1211.76013
[45] Thompson, R. L.; de Souza Mendes, P. R., A constitutive model for non-Newtonian materials based on the persistence-of-straining tensor, Meccanica, 46, 1035-2045 (2011) · Zbl 1271.76017
[46] Thompson, R. L.; Mishra, A. A.; Iaccarino, G.; Edeling, W. N.; Sampaio, L. E.B., Eigenvector perturbation methodology for uncertainty quantification of turbulence models, Phys Rev Fluids, 4, 044603, 1-13 (2019)
[47] Thompson, R. L.; Sampaio, L. E.B.; Alves, F. A.V. B.; Thais, L.; Mompean, G., A methodology to evaluate statistical errors in DNS data of plane channel flows, Comput Fluids, 130, 1-7 (2016) · Zbl 1390.76226
[48] Tracey, B.; Duraisamy, K.; Alonso, J. J., Application of supervised learning to quantify uncertainties in turbulence and combustion modeling., AIAA aerospace sciences meeting, 0259 (2013)
[49] Tracey, B.; Duraisamy, K.; Alonso, J. J., A machine learning strategy to assist turbulence model development., AIAA aerospace sciences meeting, 1287 (2015)
[50] Vinuesa, R.; Prus, C.; Schlatter, P.; Nagib, H., Convergence of numerical simulations of turbulent wall-bounded flows and mean cross-flow structure of rectangular ducts, Meccanica, 51, 3025-3042 (2016)
[51] Vreman, A. W.; Kuerten, J. G.M., Comparison of direct numerical simulation databases of turbulent channel flow at \(Re_τ = 180\), Phys Fluids, 26, 015102 (2014)
[52] Wang J.-X., Wu J.-L., Ling J., Iaccarino G., Xiao H.. A comprehensive physics-informed machine learning framework for predictive turbulence modeling. arXiv:170107102v1 2017b.
[53] Wang, J.-X.; Xiao, H.; Wu, J.-L., Physics informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data., Phys Rev Fluids, 2, 034603 (2017)
[54] Wu, J.-L.; Sun, R.; Laizet, S.; Xiao, H., Representation of stress tensor perturbations with application in machine-learning-assisted turbulence modeling, Comput Meth Appl Mech Eng, 346, 707-726 (2019)
[55] Wu, J.-L.; Wang, J.-X.; Xiao, H.; Ling, J., A priori assessment of prediction confidence for data-driven turbulence modeling, Flow Turbul Combust, 99, 25-46 (2017)
[56] Wu, J.-L.; Xiao, H.; Paterson, E., Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework, Phys Rev Fluids, 3, 074602, 1-28 (2018)
[57] Wu, J.-L.; Xiao, H.; Sun, R.; Wang, Q., Reynolds-average Navier-Stokes equations with explicit data-driven Reynolds stress closure can be ill-conditioned., J Fluid Mech, 869, 553-586 (2019) · Zbl 1429.76066
[58] Yamamoto, Y.; Tsuji, Y., Numerical evidence of logarithmic regions in channel flow at ReÏ 8000, Phys Rev Fluids, 3, 012602, 1-10 (2018)
[59] Zhang, J.; Fu, S., An efficient approach for quantifying parameter uncertainty in the SST turbulence model, Comput Fluids, 181, 173-187 (2019) · Zbl 1410.76140
[60] Zhu, L.; Zhang, W.; Kou, J.; Liu, Y., Machine learning methods for turbulence modeling in subsonic flows around airfoils, Phys Fluids, 31, 015105, 1-14 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.