# zbMATH — the first resource for mathematics

2-D fracture mechanics problems by SGFEM. (English) Zbl 07127468
Summary: In this paper, an extensive investigation is done on Stable Generalized Finite Element Method (SGFEM) performance through the analysis of 2-D fracture mechanics problems. Condition number, Stress Intensity Factors (SIFs), global and local measures of the energy norm are used to study SGFEM conditioning and accuracy. Computational time is also briefly discussed. The method is compared with the standard Generalized/eXtended Finite Element Method (G/XFEM). Numerical experiments corroborate and complement the knowledge available in the literature so far, and demonstrate SGFEM accuracy in 2-D cracked problems. Modified Heaviside Functions, combined with other enrichment functions, are also studied in the simulations. A simple and yet generic implementation for SGFEM is described, under the Object Oriented strategy, in a open source software. The implementation can be used in 2-D and 3-D problems, and it allows to generalize the implementation of any type of enrichment function under the SGFEM approach.

##### MSC:
 74 Mechanics of deformable solids 65 Numerical analysis
INSANE; XFEM
Full Text:
##### References:
 [1] Belytschko, T.; Gracie, R.; Ventura, G., A review of extended/generalized finite element methods for material modeling, Model Simul Mater Sci Eng, 17, 4, 24pp (2009) [2] Babuška, I.; Caloz, G.; Osborn, J. E., Special finite element methods for a class of second order elliptic problems with rough coeficients, SIAM J Numer Anal, 31 (4), 745-981 (1994) · Zbl 0807.65114 [3] Babuška, I.; Melenk, J. M., The partition of unity finite element method, Int J Numer Methods Eng, 40, 727-758 (1997) · Zbl 0949.65117 [4] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Int J Numer Methods Eng, 45, 601-620 (1999) · Zbl 0943.74061 [5] Duarte, C. A.; Babuška, I.; Oden, J. T., Generalized finite element methods for three-dimensional structural mechanics problems, Comput Struct, 77, 2, 215-232 (2000) [6] Duarte, C. A.; Oden, J. T., An hp adaptive method using clouds, Comput Methods Appl Mech Eng, 139, 237-262 (1996) · Zbl 0918.73328 [7] Melenk, J. M.; Babuška, I., The Partition of Unity Finite Element Method: basic theory and applications, Comput Methods Appl Mech Eng, 139, 289-314 (1996) · Zbl 0881.65099 [8] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int J Numer Methods Eng, 46, 131-150 (1999) · Zbl 0955.74066 [9] Oden, J. T.; Duarte, C. A.; Zienkiewicz, O. C., A new cloud-based hp finite element method, Comput Methods Appl Mech Eng, 153, 117-126 (1998) · Zbl 0956.74062 [10] Gupta, V.; Duarte, C. A.; Babuška, I.; Banerjee, U., A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics, Comput Methods Appl Mech Eng, 266, 23-39 (2013) · Zbl 1286.74102 [11] Gupta, V.; Duarte, C. A.; Babuška, I.; Banerjee, U., Stable GFEM (SGFEM): Improved conditioning and accuracy of GFEM/XFEM for three-dimensional fracture mechanics, Comput Methods Appl Mech Eng, 289, 355-386 (2015) · Zbl 1423.74886 [12] Béchet, E.; Minnebo, H.; Moës, N.; Burgardt, B., Improved implementation and robustness study of the X-FEM for stress analysis around cracks, Int J Numer Methods Eng, 64, 1033-1056 (2005) · Zbl 1122.74499 [13] Chahine, E.; Laborde, P.; Renard, Y., Crack tip enrichment in the XFEM method using a cut-off function, Int J Numer Methods Eng, 00, 1-15 (2006) [14] Chevaugeon, N.; Moës, N.; Minnebo, H., Improved crack tip enrichment functions and integration for crack modelling using the extended finite element method, J Multiscale Comput Eng, 11 (6), 597-631 (2013) [15] Laborde, P.; Pommier, J.; Renard, Y.; Salaü, M., High-order eXtended finite element method for cracked domains, Int J Numer Methods Eng Engineering, 64, 354-381 (2005) · Zbl 1181.74136 [16] Menk, A.; Bordas, S. P.A., A robust preconditioning technique for the eXtended finite element method, Int J Numer Methods Eng Engineering, 85, 1609-1632 (2011) · Zbl 1217.74128 [17] Strouboulis, T.; Babuška, I.; Copps, K., The design and analysis of the generalized finite element method, Comput Methods Appl Mech Eng, 181, 1-3, 43-69 (2000) · Zbl 0983.65127 [18] Lins, R. M., A posteriori error estimations for the generalized finite element method and modified versions (2015), EESC - USP: EESC - USP São Carlos, SP, Brazil [19] Sillem, A.; Simone, A.; Sluys, L., The orthonormalized generalized finite element method-OGFEM: efficient and stable reduction of approximation errors through multiple orthonormalized enriched basis functions, Comput Methods Appl Mech Eng, 287, 112-149 (2015) · Zbl 1425.65178 [20] Agathos, K.; Bordas, S.; Chatzi, E., Improving the conditioning of XFEM/GFEM for fracture mechanics problems through enrichment quasi-orthogonalization, Comput Methods Appl Mech Eng, 346, 1051-1073 (2019) [21] Tian, R., Extra-dof-free and linearly independent enrichments in GFEM, Comput Methods Appl Mech Eng, 266, 1-22 (2013) · Zbl 1286.74110 [22] Tian, R.; Wen, L., Improved XFEM - an extra-dof free, well-conditioning, and interpolating XFEM, Comput Methods Appl Mech Eng, 285, 639-658 (2015) · Zbl 1423.74926 [23] Fries, T.-P.; Belytschko, T., The eXtended/generalized finite element method: an overview of the method and its applications, Int J Numer Methods Eng, 84, 253-304 (2010) · Zbl 1202.74169 [24] Chessa, J.; Wang, H.; Belytschko, T., On the construction of blending elements for local partition of unity enriched finite elements, Int J Numer Methods Eng, 57, 1015-1038 (2003) · Zbl 1035.65122 [25] Fries, T.-P., A corrected XFEM approximation without problems in blending elements, Int J Numer Methods Eng, 75, 503-532 (2008) · Zbl 1195.74173 [26] Gracie, R.; Wang, H.; Belytschko, T., Blending in the eXtended Finite Element Method by discontinuous Galerkin and assumed strain methods, Int J Numer Methods Eng, 74(11), 1645-1669 (2008) · Zbl 1195.74175 [27] Ventura, G.; Gracie, R.; Belytschko, T., Fast integration and weight function blending in the eXtended finite element method, Int J Numer Methods Eng, 77 (1), 1-29 (2009) · Zbl 1195.74201 [28] Aragón, A. M.; Duarte, C. A.; Geubelle, P. H., Generalized finite element enrichment functions for discontinuous gradient fields, Int J Numer Methods Eng, 82, 242-268 (2010) · Zbl 1188.74051 [29] Babuška, I.; Banerjee, U., Stable Generalized Finite Element Method (SGFEM), Tech. Rep (2011), The Institute for Computational Engineering and Sciences, The University of Texas at Austin · Zbl 1239.74093 [30] Babuška, I.; Banerjee, U., Stable Generalized Finite Element Method (SGFEM), Comput Methods Appl Mech Eng, 201-204, 91-111 (2012) · Zbl 1239.74093 [31] Zhang, Q.; Banerjee, U.; Babuška, I., Strongly stable generalized finite element method (SSGFEM) for a non-smooth interface problem, Comput Methods Appl Mech Eng, 344, 538-568 (2018) [32] Zhang, Q.; Banerjee, U.; Babuška, I., Higher order stable generalized finite element method, Numer Math, 128, 1-29 (2014) · Zbl 1304.65254 [33] Sato, F. M.; Neto, D. P.; Proença, S., Numerical experiments with the generalized finite element method based on a flat-top partition of unity, Latin Am J Solids Struct, 15 (11), [online] (2018) [34] Wu, J.-Y.; Li, F.-B., An improved stable XFEM (is-XFEM) with a novel enrichment function for the computational modeling of cohesive cracks, Comput Methods Appl Mech Eng, 295, 77-107 (2015) · Zbl 1423.74934 [35] Zhang, Q.; Babuška, I.; Banerjee, U., Robustness in stable generalized finite element methods (SGFEM) applied to poisson problems with crack singularities, Comput Methods Appl Mech Eng, 311, 476-502 (2016) [36] Sanchez-Rivadeneira, A. G.; Duarte, C. A., A stable generalized/extended FEM with discontinuous interpolants for fracture mechanics, Comput Methods Appl Mech Eng, 345, 876-918 (2019) [37] Feng, S. Z.; Li, W., An accurate and efficient algorithm for the simulation of fatigue crack growth based on XFEM and combined approximations, Appl Math Model, 55, 600-615 (2018) · Zbl 07166659 [38] Liu, G. R.; Dai, K. Y.; Nguyen, T. T., A smoothed finite element method for mechanics problems, Comput Mech, 39, 859-877 (2018) · Zbl 1169.74047 [39] Liu, G. R.; Nguyen-Thoi, T.; Lam, K. Y., An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibratioon analyses of solids, J Sound Vib, 320, 1100-1130 (2009) [40] Liu, G. R.; Nguyen-Thoi, T.; Nguyen-Xua, H.; Lam, K. Y., A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems, Comput Struct, 87, 14-26 (2009) [41] Bordas, S. P.A.; Rabczuk, T.; Hung, N. X.; Nguyen, V. P.; Natarajan, S.; Bog, T., Strain smoothing in FEM and XFEM, Computer & Structures, 88, 1419-1443 (2010) [42] Bordas, S. P.A.; Natarajan, S.; Kerfriden, P.; Augarde, C. E.; Mahapatra, D. R.; Rabczuk, T., On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM), Int J Numer Methods Eng, 86, 637-666 (2011) · Zbl 1216.74019 [43] Bie, Y. H.; Cui, X. Y.; Li, Z. C., A coupling approach of state-based peridynamics with node-based smoothed finite element method, Comput Methods Appl Mech Eng, 331, 675-700 (2018) [44] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J Mech Phys Solids, 48, 175-209 (2000) · Zbl 0970.74030 [45] Li, S.; Tian, L.; Cui, X., Phase field crack model with diffuse description for fracture problem and implementation in engineering applications, Adv Eng Softw, 129, 44-56 (2019) [46] Cui, X. Y.; Hu, X. B.; Liang, Z. M.; Li, G. Y., The performance prediction and optimization of the fiber-reinforced composite structure with uncertain parameters, Compos Struct, 164, 207-218 (2017) [47] Cui, X. Y.; Hu, X. B.; Zeng, Y., A Copula-based perturbation stochastic method for fiber-reinforced composite structures with correlations, Comput Methods Appl Mech Eng, 322, 351-372 (2017) [49] Alves, P. D.; Barros, F. B.; Pitangueira, R. L.S., An object-oriented approach to the generalized finite element method, Adv Eng Softw, 59, 1-18 (2013) [50] Malekan, M.; Barros, F. B.; Pitangueira, R. L.S.; Alves, P. D.; Penna, S. S., A computational framework for a two-scale generalized/extended finite element method, Eng Comput, 34, 3, 988-1019 (2017) [51] Malekan, M.; Barros, F. B., Well-conditioning global-local analysis using stable generalized/eXtended finite element method for linear elastic fracture mechanics, Comput Mech, 58, 819-831 (2016) · Zbl 1398.74367 [52] Nguyen, V. P.; Rabczuk, T.; Bordas, S.; Duflot, M., Meshless methods: a review and computer implementation aspects, Math Comput Simul, 79, 763-813 (2008) · Zbl 1152.74055 [53] Lins, R. M.; Ferreira, M. D.C.; Proença, S. P.B.; Duarte, C. A., An a-posteriori error estimator for linear elastic fracture mechanics using the stable generalized/eXtended finite element method, Comput Mech, 56, 947-965 (2015) · Zbl 1336.74067 [54] Szabó, B. A.; Babuška, I. M., Finite eSSSSSlement analysis (1991), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York, NY, USA [55] Pereira, J.; Duarte, C., Extraction of stress intensity factors from generalized finite element solutions, Eng Anal Bound Elem, 29, 397-413 (2005) · Zbl 1182.74205 [56] Anacleto, F. E.S.; Ribeiro, T. S.A.; Ribeiro, G. O.; Pitangueira, R. L.S.; Penna, S. S., An object-oriented tridimensional self-regular boundary element method implementation, Eng Anal Bound Elem, 37, 1276-1284 (2013) · Zbl 1287.65120 [57] Hosseini, S.; Malekan, M.; Pitangueira, R. L.S.; Silva, R. P., Imposition of Dirichlet boundary conditions in element free Galerkin method through an Object-Oriented Implementation, Latin Am J Solids Struct, 14, 1017-1039 (2017) [58] Pinheiro, D.; Barros, F.; Pitangueira, R.; Penna, S., High regularity partition of unity for structural physically non-linear analysis, Eng Anal Bound Elem, 83, 43-54 (2017) · Zbl 1403.74120 [59] Malekan, M.; Silva, L. L.; Barros, F. B.; Pitangueira, R. L.S.; Penna, S. S., Two-dimensional fracture modeling with the generalized/eXtended finite element method: an object-oriented programming approach, Adv Eng Softw, 115, 168-193 (2018) [60] Pereira, J. P.; Duarte, C. A.; Guoy, D.; Jiao, X., hp-Generalized FEM and crack surface representation for non-planar 3-D cracks, Int J Numer Methods Eng, 77, 601-633 (2009) · Zbl 1156.74383 [61] Ewalds, H.; Wanhill, R., Fracture mechanics (1989), Edward Arnold: Edward Arnold New York, NY, USA [62] Oden, J. T.; Duarte, C. A., Clouds, cracks and FEM’s, (Reddy, B. D., Recent Developments in Computational and Applied Mechanics: A Volume in Honour of John B Martin (1997), CIMNE: CIMNE Barcelona) · Zbl 0976.74071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.