zbMATH — the first resource for mathematics

Variability of betweenness centrality and its effect on identifying essential genes. (English) Zbl 1426.92022
Summary: This paper begins to build a theoretical framework that would enable the pharmaceutical industry to use network complexity measures as a way to identify drug targets. The variability of a betweenness measure for a network node is examined through different methods of network perturbation. Our results indicate a robustness of betweenness centrality in the identification of target genes.

92C42 Systems biology, networks
92C40 Biochemistry, molecular biology
Full Text: DOI
[1] Azzarelli B, Miravalle L, Vidal R (2004) Immunolocalization of the oligodendrocyte transcription factor 1 (Olig1) in brain tumors. J Neuropathol Exp Neurol 63:170-179
[2] Bavelas A (1950) Communication patterns in task-oriented groups. J Acoust Soc Am 22(6):725-730
[3] Berscheminski J, Brun J, Speiseder T, Wimmer P, Ip WH, Terzic M, Dobner T, Schreiner S (2016) Sp100A is a tumor suppressor that activates p53-dependent transcription and counteracts E1A/E1B-55K-mediated transformation. Oncogene 35:3178-3189
[4] Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424(4-5):175-308 · Zbl 1371.82002
[5] Bonacich P (1987) Power and centrality: a family of measures. Am J Sociol 92(5):1170-1182
[6] Breitkreutz D, Hlatky L, Rietman E, Tuszynski J (2012) Molecular signaling network complexity is correlated with cancer patient survivability. Proc Nat Acad Sci 109(23):9209-9212
[7] Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, Sulman EP, Anne SL, Doetsch F, Colman H, Lasorella A, Aldape K, Califano A, Iavaone A (2010) The transcriptional network for mesenchymal transformation of brain tumours. Nature 463:318-325
[8] Cooper LAD, Gutman DA, Chisolm C, Appin C, Kong J, Rong Y, Kurc T, Van Meir EG, Saltz JH, Moreno CS, Brat DJ (2012) The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma. Am J Pathol 180(5):2108-2119
[9] Davis FB, Tang H-Y, Shih A, Keating T, Lansing L, Hercbergs A, Fenstermaker RA, Mousa A, Mousa SA, Davis PJ, Lin H-Y (2006) Acting via a cell surface receptor, thyroid hormone is a growth factor for glioma cells. Cancer Res 66:7270-7275
[10] del Rio G, Koschützki D, Coello G (2009) How to identify essential genes from molecular networks? BMC Syst Biol 3(1):102
[11] Epskamp S, Borsboom D, Fried EI (2017) Estimating psychological networks and their accuracy: a tutorial paper. Behav Res Methods 1-18
[12] Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 35-41
[13] Han J-DJ, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP (2004) Evidence for dynamically organized modularity in the yeast protein – protein interaction network. Nature 430(6995):88
[14] Jakovcevski I, Zecevic N (2005) Olig transcription factors are expressed in oligodendrocyte and neuronal cells in human fetal CNS. J Neurosci 25:10064-10073
[15] Jeong H, Mason SP, Barabási A-L, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41
[16] Lachmann A, Giorgi FM, Lopez G, Califano A (2016) ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information. Bioinformatics 32(14):2233-2235
[17] Li M, Wang J, Chen X, Wang H, Pan Y (2011) A local average connectivity-based method for identifying essential proteins from the network level. Comput Biol Chem 35(3):143-150 · Zbl 1366.92046
[18] Madhavan S, Zenklusen J-C, Kotliarov Y, Sahni H, Fine HA, Buetow K (2009) Rembrandt: helping personalized medicine become a reality through integrative translational research. Mol Cancer Res 7(2):157-167
[19] Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform 7:S7
[20] Mistry D, Wise RP, Dickerson JA (2017) DiffSLC: a graph centrality method to detect essential proteins of a protein – protein interaction network. PLoS ONE 12(11):e0187091
[21] Mo W, Chen J, Patel A, Zhang L, Chau V, Li Y, Cho W, Lim K, Xu J, Lazar AJ et al (2013) CXCR4/CXCL12 mediate autocrine cell-cycle progression in NF1-associated malignant peripheral nerve sheath tumors. Cell 152(5):1077-1090
[22] Motizuki M, Isogaya K, Miyake K, Ikushima H, Kubota T, Miyazono K, Saitoh M, Miyazawa K (2013) Oligodendrocyte transcription factor 1 (Olig1) is a smad cofactor involved in cell motility induced by transforming growth factor-\[ \beta\] β. J Biol Chem 288:18911-18922
[23] Newman ME (2003) The structure and function of complex networks. SIAM Rev 45(2):167-256 · Zbl 1029.68010
[24] Pan Y, Smithson LJ, Ma Y, Hambardzumyan D, Gutmann DH (2017) Ccl5 establishes an autocrine high-grade glioma growth regulatory circuit critical for mesenchymal glioblastoma survival. Oncotarget 8:32977-32989
[25] Pan Y, Duron C, Bush EC, Ma Y, Sims PA, Gutmann DH, Radunskaya A, Hardin J (2018) Graph complexity analysis identifies an ETV5 tumor-specific network in human and murine low-grade glioma. PLoS ONE 13(5):e0190001
[26] Ramadan E, Alinsaif S, Hassan MR (2016) Network topology measures for identifying disease-gene association in breast cancer. BMC Bioinform 17(7):274
[27] Sabo JK, Heine V, Silbereis JC, Schirmer L, Levison SW, Rowitch DH (2017) Olig1 is required for noggin-induced neonatal myelin repair. Ann Neurol 81:560-571
[28] Sahin A, Velten M, Pietsch T, Knuefermann P, Okuducu A, Hahne J, Wernert N (2005) Inactivation of Ets 1 transcription factor by a specific decoy strategy reduces rat C6 glioma cell proliferation and mmp-9 expression. Int J Mol Med 15:771-776
[29] Schlierf B, Friedrich RP, Roerig P, Felsberg J, Reifenberger G, Wegner M (2007) Expression of SoxE and SoxD genes in human gliomas. Neuropathol Appl Neurobiol 33:621-630
[30] Segarra S, Ribeiro A (2016) Stability and continuity of centrality measures in weighted graphs. IEEE Trans Signal Process 64(3):543-555 · Zbl 1412.94083
[31] Selagea L, Mishra A, Anand M, Ross J, Tucker-Burden C, Kong J, Brat DJ (2016) EGFR and C/EBP-\[ \beta\] β oncogenic signaling is bidirectional in human glioma and varies with the C/EBP-\[ \beta\] β isoform. FASEB 30:4098-4108
[32] Solga AC, Pong WW, Kim K-Y, Cimino PJ, Toonen JA, Walker J, Wylie T, Magrini V, Griffith M, Griffith OL et al (2015) RNA sequencing of tumor-associated microglia reveals Ccl5 as a stromal chemokine critical for neurofibromatosis-1 glioma growth. Neoplasia 17(10):776-788
[33] Tang X, Wang J, Zhong J, Pan Y (2014) Predicting essential proteins based on weighted degree centrality. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 11(2):407-418
[34] Vallabhajosyula RR, Chakravarti D, Lutfeali S, Ray A, Raval A (2009) Identifying hubs in protein interaction networks. PLoS ONE 4(4):e5344
[35] Wasylyk C, Schlumberger S, Criqui-Filipe P, Wasylyk B (2002) Sp100 interacts with ETS-1 and stimulates its transcriptional activity. Mol Cellul Biol 22:2687-2702
[36] Xie SL, Fan S, Zhang SY, Chen WX, Li QX, Pan GK, Zhang HQ, Wang WW, Weng B, Zhang Z, Li JS, Lin ZY (2018) SOX8 regulates cancer stem-like properties and cisplatin-induced EMT in tongue squamous cell carcinoma by acting on the Wnt \[\beta\] β-catenin pathway. Int J Cancer 142:1252-1265
[37] Yin J, Oh Y, Kim J, Kim S, Choi E, Kim T, Hong J, Chang N, Cho H, Sa J, Kim J, Kwon H, Park S, Lin W, Nakano I, Gwak H, Yoo H, Lee S, Lee J, Kim J, Kim S, Nam D, Park M, Park J (2017) Transglutaminase 2 inhibition reverses mesenchymal transdifferentiation of glioma stem cells by regulating C/EPB \[\beta\] β signaling. Cancer Res 77:4973-4984
[38] Zhang X, Xu J, Xiao W (2013) A new method for the discovery of essential proteins. PLoS ONE 8(3):e58763
[39] Zhang S, Zhu C, Zhu L, Liu H, Liu S, Zhao N, Wu J, Huang X, Zhang Y, Jin J, Ji T, Ding X (2014) Oncogenicity of the transcription factor SOX8 in hepatocellular carcinoma. Med Oncol 31
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.