zbMATH — the first resource for mathematics

Filtered Krylov-like sequence method for symmetric eigenvalue problems. (English) Zbl 1436.65039
Summary: In this paper, by introducing a class of filtered Krylov-like subspaces, we present the filtered Krylov-like sequence method for computing one extreme eigenvalue and the corresponding eigenvector of symmetric matrices. The filtered Krylov-like sequence method can be desired to behave, practically, more effective and robust than the standard Krylov subspace method. We specifically select two kinds of polynomial filters, and relate them to some well-known methods. Some numerical experiments are carried out to demonstrate the convergence properties and the competitiveness of the new method.

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
15B57 Hermitian, skew-Hermitian, and related matrices
eigs; IRAM; JDQZ
Full Text: DOI
[1] Bai, Z.-Z., Miao, C.-Q.: On local quadratic convergence of inexact simplified Jacobi-Davidson method. Linear Algebra Appl. 520, 215-241 (2017) · Zbl 1359.65055
[2] Bai, Z.-Z., Miao, C.-Q.: On local quadratic convergence of inexact simplified Jacobi-Davidson method for interior eigenpairs of Hermitian eigenproblems. Appl. Math. Lett. 72, 23-28 (2017) · Zbl 1373.65022
[3] Davidson, E.R.: The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 17, 87-94 (1975) · Zbl 0293.65022
[4] Fang, H.R., Saad, Y.: A filtered Lanczos procedure for extreme and interior eigenvalue problems. SIAM J. Sci. Comput. 34, A2220-A2246 (2012) · Zbl 1253.65053
[5] Genseberger, M., Sleijpen, G.L.G.: Alternative correction equations in the Jacobi-Davidson method. Numer. Linear Algebra Appl. 6, 235-253 (1999) · Zbl 0983.65047
[6] Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996) · Zbl 0865.65009
[7] Lehoucq, R.B., Meerbergen, K.: Using generalized Cayley transformations within an inexact rational Krylov sequence method. SIAM J. Matrix Anal. Appl. 20, 131-148 (1998) · Zbl 0931.65035
[8] Miao, C.-Q.: A filtered-Davidson method for large symmetric eigenvalue problems. East Asian J. Appl. Math. 7, 21-34 (2017) · Zbl 1373.15018
[9] Miao, C.-Q.: Computing eigenpairs in augmented Krylov subspace produced by Jacobi-Davidson correction equation. J. Comput. Appl. Math. 343, 363-372 (2018) · Zbl 1391.65088
[10] Morgan, R.B., Scott, D.S.: Preconditioning the Lanczos algorithm for sparse symmetric eigenvalue problems. SIAM J. Sci. Comput. 14, 585-593 (1993) · Zbl 0791.65022
[11] Parlett, B.N.: The symmetric eigenvalue problem, SIAM, Philadelphia PA (1998) · Zbl 0885.65039
[12] Ruhe, A.: Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix pencils. SIAM J. Sci. Comput. 19, 1535-1551 (1998) · Zbl 0914.65036
[13] Saad, Y.: Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems. Math. Comp. 42, 567-588 (1984) · Zbl 0539.65013
[14] Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia, Pennsylvania (2003) · Zbl 1002.65042
[15] Saad, Y.: Numerical methods for large eigenvalue problems, 2nd edn. SIAM, Philadelphia (2011) · Zbl 1242.65068
[16] Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 401-425 (1996) · Zbl 0860.65023
[17] Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13, 357-385 (1992) · Zbl 0763.65025
[18] Szyld, D.B., Xue, F.: Local convergence analysis of inexact Newton-type algorithms for general nonlinear eigenvalue problem. Numer. Math. 123, 333-362 (2013) · Zbl 1259.65077
[19] Ye, Q.: An adaptive block Lanczos algorithm. Numer. Algor. 12, 97-110 (1996) · Zbl 0859.65032
[20] Zhou, Y.-K., Saad, Y.: A Chebyshev-Davidson algorithm for large symmetric eigenproblems. SIAM J. Matrix Anal. Appl. 29, 954-971 (2007) · Zbl 1151.65321
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.