zbMATH — the first resource for mathematics

Spectral properties of a periodically kicked quantum Hamiltonian. (English) Zbl 0713.58044
Summary: We study the spectral properties of the Floquet operator for the periodically kicked Hamiltonian \(H(t)=H_ 0+\lambda \phi ><\phi \sum^{-\infty}_{+\infty}\delta (t-nT),\) \(H_ 0\) being self-adjoint and pure point (for the meaning of \(<>\) in this formula see the paper itself). We show that the Floquet operator is pure point for almost every \(\lambda\), if \(\phi\) is cyclic for \(H_ 0\) and has absolutely convergent expansion in the basis of eigenstates of \(H_ 0\). When this last condition is not satisfied, the Floquet operator can have a continuous spectrum, as we show by an example.

37A30 Ergodic theorems, spectral theory, Markov operators
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
Full Text: DOI
[1] J. E. Bayfield and P. M. Koch,Phys. Rev. Lett. 33:258 (1974).
[2] J. Bellissard, Stability and instability in quantum mechanics, inTrends and Developments in the Eighties, S. Albeverio and Ph. Blanchard, eds. (World Scientific, Singapore, 1985). · Zbl 0584.35024
[3] G. Casati, B. V. Chirikov, I. Guarneri, and D. L. Shepelyansky,Phys. Rev. Lett. 56:2437 (1986).
[4] G. Casati, B. V. Chirikov, J. Ford, and F. M. Izrailev, inLecture Notes in Physics, Vol. 93 (Springer, Berlin, 1979).
[5] G. Casati, B. V. Chirikov, D. L. Shepelyansky, and I. Guarneri,Phys. Rep. 154:77 (1987), and references therein.
[6] G. Casati and I. Guarneri,Commun. Math. Phys. 95:121 (1984). · Zbl 0581.46062
[7] M. Combescure,Ann. Inst. Henri Poincaré 44:293 (1986);47:63 (1987).
[8] B. Dorizzi, B. Grammaticos, and Y. Pomeau,J. Stat. Phys. 37:93 (1984).
[9] V. Enss and K. Veselic,Ann. Inst. Henri Poincaré 39:159 (1983).
[10] T. Hogg and B. A. Huberman,Phys. Rev. Lett. 48:711 (1982).
[11] J. Howland,J. Funct. Anal. 74:52 (1987). · Zbl 0646.47011
[12] J. Howland, Floquet operators with singular spectrum I,Ann. Inst. Henri Poincaré, to appear.
[13] J. Howland, Floquet operators with singular spectrum II,Ann. Inst. Henri Poincaré, to appear.
[14] F. M. Izrailev and D. L. Shepelyansky,Theor. Math. Phys. 43:1586 (1980).
[15] L. Kuipers and H. Niederreiter,Uniform Distribution of Sequences (Wiley, New York, 1974). · Zbl 0281.10001
[16] B. Milek,Phys. Lett. A 135:1 (1989). · Zbl 0724.70021
[17] P. W. Milonni, J. R. Ackerhalt, and M. E. Goggin,Phys. Rev. A 35:1714 (1987).
[18] Y. Pomeau, B. Dorizzi, and B. Grammaticos,Phys. Rev. Lett. 56:681 (1986).
[19] K. Rzazewski and J. Mostowski,Phys. Rev. A 35:4414 (1987).
[20] B. Simon and T. Wolff,Commun. Pure Appl. Math. 39:75 (1986). · Zbl 0609.47001
[21] K. Yajima and H. Kitada,Ann. Inst. Henri Poincaré 39:145 (1983).
[22] K. Yosida,Functional Analysis, 2nd ed. (Springer-Verlag, Berlin, New York). · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.