zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy - a survey and some new results. (English) Zbl 0713.93052
Summary: The paper reviews the state of the art of fault detection and isolation in automatic processes using analytical redundancy, and presents some new results. It outlines the principles and most important techniques of model-based residual generation using parameter identification and state estimation methods with emphasis upon the latest attempts to achieve robustness with respect to modelling errors. A solution to the fundamental problem of robust fault detection, providing the maximum achievable robustness by decoupling the effects of faults from each other and from the effects of modelling errors, is given. This approach not only completes the theory but is also of great importance for practical applications. For the case where the prerequisites for complete decoupling are not given, two approximate solutions - one in the time domain and one in the frequency domain - are presented, and the crossconnections to earlier approaches are evidenced. The resulting observer schemes for robust instrument fault detection, component fault detection, and actuator fault detection are briefly discussed. Finally, the basic scheme of fault diagnosis using a combination of analytical and knowledge-based redundancy is outlined.

MSC:
93E10Estimation and detection in stochastic control
93E12System identification (stochastic systems)
WorldCat.org
Full Text: DOI
References:
[1] Basseville, M.; Benveniste, A.: Detection of abrupt changes in signals and dynamical systems. Lecture notes in control and information sciences 77 (1985) · Zbl 0554.62070
[2] Beard, R. V.: Failure accommodation in linear systems through self-reorganization. (1971)
[3] Chow, E. Y.; Willsky, A. S.: Analytical redundancy and the design of robust failure detection systems. IEEE trans. Aut. control 29, 603-614 (1984) · Zbl 0542.90040
[4] Clark, R. N.: A simplified instrument failure detection scheme. IEEE trans. Aerospace electron. Syst. 14, 558-563 (1978)
[5] Clark, R. N.: Instrument fault detection. IEEE trans. Aerospace electron. Syst. 14, 456-465 (1978)
[6] Clark, R. N.; Fosth, D. C.; Walton, V. M.: Detection instrument malfunctions in control systems. IEEE trans. Aerospace electron. Syst. 11, 465-473 (1975)
[7] Deckert, J. C.; Desai, M. N.; Deyst, J. J.; Willsky, A. S.: DFBW sensor failure identification using analytic redundancy. IEEE trans. Aut. conrol 22, 795-809 (1977)
[8] Desai, M.; Ray, A.: A fault detection and isolation methodology. Proc. 20th conf. On decision and control, 1363-1369 (1981)
[9] Ding, X.; Frank, P. M.: Komponentenfehlerdetektion mittels auf empfindlichkeitsanalyse basierender robuster detektionsfilter at automatisierungstechnik. (1989)
[10] Emami-Naeini, A.: Robust detection, isolation, and accommodation for sensor failures. NASA contractor report no. CR-174825 (1986)
[11] Frank, P. M.: Fault diagnosis in dynamic systems via state estimation--A survey. System fault diagnostics, reliability and related knowledge-based approaches 1, 35-98 (1987)
[12] Frank, P. M.: Advanced fault detection and isolation schemes using nonlinear and robust observers. Presented at 10th IFAC world congress (1987)
[13] Frank, P. M.: Fault diagnosis on the basis of dynamic process models. Presented at 12th IMACS world congress on scientific computation (1988)
[14] Frank, P. M.; Keller, L.: Sensitivity discriminating observer design for instrument failure detection. IEEE trans. Aerospace electron. Syst. 16, 460-467 (1980)
[15] Frank, P. M.; Keller, L.: Entdeckung von instrumentenfehlanzeigen mittels zustandsschätzung in technischen regelungssystemen. Fortschrittsbericht VDIZ 8 (1984)
[16] Ge, W.; Fang, C. Z.: Detection of faulty components via robust observation. Int. J. Control 47, 581-599 (1988) · Zbl 0642.93010
[17] Himmelblau, D. M.: Fault detection and diagnosis in chemical and petrochemical processes. (1978)
[18] Isermann, R.: Process fault detection based on modeling and estimation methods--a survey. Automatica 20, 387-404 (1984) · Zbl 0539.90037
[19] Jones, H. L.: Failure detection in linear systems. Ph.d. thesis (1973)
[20] Kitamura, M.: Detection of sensor failures in nuclear plant using analytic redundancy. Trans. am. Nucl. soc. 34, 581-583 (1980)
[21] Labarrère, M.: Aircraft sensor failure detection by analytic redundancy. Systems and control encyclopedia 1, 246-251 (1987)
[22] Lou, X. C.; Willsky, A. S.; Verghese, G. L.: Optimally robust redundancy relations for failure detection in uncertain systems. Automatica 22, 333-344 (1986) · Zbl 0596.93019
[23] Massoumnia, M. A.: A geometric approach to failure detection and identification in linear systems. Ph.d. thesis (1986) · Zbl 0599.93017
[24] Mehra, R. K.; Peshon, I.: An innovations approach to fault detection and diagnosis in dynamic systems. Autmatica 7, 637-640 (1971)
[25] Milne, R.: Strategies for diagnosis. IEEE trans. Syst., man cybern. 17, 333-339 (1987)
[26] Montgomery, R. C.; Caglayan, A. K.: A self-reorganizing digital flight control system for aircraft. Presented at AIAA 12th aerospace sciences meeting (1974)
[27] Onken, R.; Stuckenberg, N.: Failure detection in signal processing and sensing in flight control systems. Proc. IEEE conf. On decision and control, 449-454 (1979) · Zbl 0436.93045
[28] Patton, R. J.; Frank, P. M.; Clark, R. N.: Fault diagnosis in dynamic systems, theory and applications. (1989)
[29] Patton, R. J.; Willcox, S. W.; Winter, J. S.: A parameter insensitive technique for aircraft sensor fault analysis. AIAA J. Guidance control dynam., 359-367 (1987)
[30] Potter, I. E.; Sunman, M. C.: Thresholdless redundancy management with arrays of skewed instruments. Integrity in electronic flight control systems, 15-25 (1977)
[31] Viswanadham, N.; Srichander, R.: Fault detection using unknown-input observers. Control theory and advanced technology 3, 91-101 (1987)
[32] Viswanadham, N.; Sarma, V. V. S.; Singh, M. G.: Reliability of computer and control systems. 8 (1987) · Zbl 0623.93001
[33] Walker, B. K.: Recent developments in fault diagnosis and accommodation. Presented at AIAA guidance and control conf. (1983)
[34] Watanabe, K.; Himmelblau, D. M.: Instrument fault detection in systems with uncertainties. Int. J. Syst. sci. 13, 137-158 (1982) · Zbl 0475.93069
[35] Weiss, J. L.; Pattipati, K. R.; Willsky, A. S.; Eterno, J. S.; Crawford, J. T.: Robust detection/isolation/accommodation for sensor failures. NASA contr. Rep. 174797, Lewis res. Cent. NAS 3-24078 (1985)
[36] Wilbers, D. N.; Speyer, J. L.: Detection filters for aircraft sensor and actuator faults. Proc. ICCON ’89 int. Conf. on control and applications (1989)
[37] Willsky, A. S.: A survey of design methods for failure detection in dynamic systems. Automatica 12, 601-611 (1976) · Zbl 0345.93067
[38] Wünnenberg, J.: Linear and nonlinear robust fault detection in dynamic systems. Dissertation (1990)
[39] Wünnenberg, J.; Frank, P. M.: Sensor fault detection via robust observers. System fault diagnostics, reliability and related knowledge-based approaches 1, 147-160 (1987)
[40] Wünnenberg, J.; Frank, P. M.: Dynamic model-based incipient fault detection concept for robots. Submitted to the 11th IFAC world congress (1990)