×

zbMATH — the first resource for mathematics

Taut foliations in branched cyclic covers and left-orderable groups. (English) Zbl 1445.57017
The \(L\)-space Conjecture is that for a closed, connected, irreducible, orientable \(3\)-manifold \(M\), the following statements are equivalent: (1) \(M\) is not a Heegaard Floer \(L\)-space, (2) \(M\) admits a co-orientable taut foliation, (3) \(\pi_1 (M)\) is left-orderable.
The conjecture is known to be true in many cases, for example when \(M\) has positive first Betti number, or is a non-hyperbolic \(3\)-manifold, or is a graph manifold. Gordon and Lidman call \(M\) excellent, if \(M\) satisfies conditions (2) and (3). Since (2) and (3) imply (1), the conjecture holds for excellent \(3\)-manifolds.
The authors consider hyperbolic fibered knots \(K\) with monodromy \(h\) in an oriented integer homology 3-sphere and show that the \(n\)-fold cyclic branched covering \(\Sigma_n (K)\) is excellent for \(n |c(h)| \geq 1\), where \(c(h)\) is the fractional Dehn twist coefficient of \(h\). In particular, if \(c(h)\neq 0\) and \(g\) is the genus of \(K\), then \(\Sigma_n (K)\) is excellent for \(n \geq 2(2g-1)\). Considering closed braids, the authors complete the proof of the \(L\)-space conjecture for closed, connected, orientable, irreducible \(3\)-manifolds containing a genus one fibred knot. They also prove that the universal abelian cover of a manifold obtained by generic Dehn surgery on a hyperbolic fibered knot in an integer homology \(3\)-sphere is excellent, even if the surgered manifold is not, and that the same holds for many branched covers of satellite knots with braided patterns.
The paper is well written by providing in the first six chapters (after the introduction) all the necessary definitions and facts about cyclic branched coverings, mapping class groups and braids, fractional Dehn twist coefficients, Euler classes of representations and oriented circle bundles, and the universal circle representation associated to a rational homology 3- sphere endowed with a co-oriented taut foliation. In particular they give a detailed proof of the fact, due to Thurston, that the Euler class of the universal circle representation coincides with that of the associated foliation’s tangent bundle. No proof of this result has previously appeared in the literature.

MSC:
57M50 General geometric structures on low-dimensional manifolds
57R30 Foliations in differential topology; geometric theory
20F60 Ordered groups (group-theoretic aspects)
57M99 General low-dimensional topology
20F36 Braid groups; Artin groups
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] [Al]Al J. W. Alexander, \it A lemma on system of knotted curves, Proc. Nat. Acad. Sci. USA \bf 9 (1923), 93-95.
[2] [BM]BM K. Baker and K. Motegi, \it Seifert vs slice genera of knots in twist families and a characterization of braid axes, preprint arXiv:1705.10373, 2017.
[3] Baldwin, John A., Heegaard Floer homology and genus one, one-boundary component open books, J. Topol., 1, 4, 963-992 (2008) · Zbl 1160.57009
[4] [BBG]BBG M. Boileau, S. Boyer, and C. McA. Gordon, \it Branched covers of quasipositive links and L-spaces, preprint arXiv:1710.07658, 2017.
[5] Boyer, Steven; Clay, Adam, Foliations, orders, representations, L-spaces and graph manifolds, Adv. Math., 310, 159-234 (2017) · Zbl 1381.57003
[6] Boyer, Steven; Gordon, Cameron McA.; Watson, Liam, On L-spaces and left-orderable fundamental groups, Math. Ann., 356, 4, 1213-1245 (2013) · Zbl 1279.57008
[7] Boileau, Michel; Porti, Joan, Geometrization of 3-orbifolds of cyclic type, Ast\'erisque, 272, 208 pp. pp. (2001) · Zbl 0971.57004
[8] Boyer, Steven; Rolfsen, Dale; Wiest, Bert, Orderable 3-manifold groups, Ann. Inst. Fourier (Grenoble), 55, 1, 243-288 (2005) · Zbl 1068.57001
[9] Bowden, Jonathan, Approximating \(C^0\)-foliations by contact structures, Geom. Funct. Anal., 26, 5, 1255-1296 (2016) · Zbl 1362.57037
[10] \bibBZbook label=BZ, author=Burde, Gerhard, author=Zieschang, Heiner, title=Knots, edition=2, series=De Gruyter Studies in Mathematics, volume=5, pages=xii+559, publisher=Walter de Gruyter & Co., Berlin, date=2003, isbn=3-11-017005-1, review=\MR1959408,
[11] Calegari, Danny, Leafwise smoothing laminations, Algebr. Geom. Topol., 1, 579-585 (2001) · Zbl 0978.57011
[12] Calegari, Danny, Foliations and the geometry of 3-manifolds, Oxford Mathematical Monographs, xiv+363 pp. (2007), Oxford University Press, Oxford · Zbl 1118.57002
[13] Candel, Alberto, Uniformization of surface laminations, Ann. Sci. \'Ecole Norm. Sup. (4), 26, 4, 489-516 (1993) · Zbl 0785.57009
[14] Candel, Alberto; Conlon, Lawrence, Foliations. II, Graduate Studies in Mathematics 60, xiv+545 pp. (2003), American Mathematical Society, Providence, RI · Zbl 1035.57001
[15] Calegari, Danny; Dunfield, Nathan M., Laminations and groups of homeomorphisms of the circle, Invent. Math., 152, 1, 149-204 (2003) · Zbl 1025.57018
[16] Clay, Adam; Lidman, Tye; Watson, Liam, Graph manifolds, left-orderability and amalgamation, Algebr. Geom. Topol., 13, 4, 2347-2368 (2013) · Zbl 1301.06038
[17] D\cabkowski, Mieczys\l aw K.; Przytycki, J\'ozef H.; Togha, Amir A., Non-left-orderable 3-manifold groups, Canad. Math. Bull., 48, 1, 32-40 (2005) · Zbl 1065.57001
[18] Dunbar, William D., Geometric orbifolds, Rev. Mat. Univ. Complut. Madrid, 1, 1-3, 67-99 (1988) · Zbl 0655.57008
[19] Fathi, Albert; Laudenbach, Fran\ccois; Po\'enaru, Valentin, Thurston’s work on surfaces, Mathematical Notes 48, xvi+254 pp. (2012), Princeton University Press, Princeton, NJ · Zbl 1244.57005
[20] Farb, Benson; Margalit, Dan, A primer on mapping class groups, Princeton Mathematical Series 49, xiv+472 pp. (2012), Princeton University Press, Princeton, NJ · Zbl 1245.57002
[21] Gabai, David, Foliations and the topology of \(3\)-manifolds, J. Differential Geom., 18, 3, 445-503 (1983) · Zbl 0533.57013
[22] Gabai, David, Foliations and \(3\)-manifolds. Proceedings of the International Congress of Mathematicians, Vol. I, II, Kyoto, 1990, 609-619 (1991), Math. Soc. Japan, Tokyo · Zbl 0754.57008
[23] Gabai, David; Oertel, Ulrich, Essential laminations in \(3\)-manifolds, Ann. of Math. (2), 130, 1, 41-73 (1989) · Zbl 0685.57007
[24] Geiges, Hansj\"org, An introduction to contact topology, Cambridge Studies in Advanced Mathematics 109, xvi+440 pp. (2008), Cambridge University Press, Cambridge · Zbl 1153.53002
[25] Ghys, \'Etienne, Groups acting on the circle, Enseign. Math. (2), 47, 3-4, 329-407 (2001) · Zbl 1044.37033
[26] Ghiggini, Paolo, Knot Floer homology detects genus-one fibred knots, Amer. J. Math., 130, 5, 1151-1169 (2008) · Zbl 1149.57019
[27] Gordon, C. McA., Riley’s conjecture on \(\operatorname{SL}(2,\mathbb{R})\) representations of 2-bridge knots, J. Knot Theory Ramifications, 26, 2, 1740003, 6 pp. (2017) · Zbl 1362.57006
[28] Gordon, Cameron; Lidman, Tye, Taut foliations, left-orderability, and cyclic branched covers, Acta Math. Vietnam., 39, 4, 599-635 (2014) · Zbl 1310.57023
[29] Gordon, Cameron; Lidman, Tye, Corrigendum to “Taut foliations, left-orderability, and cyclic branched covers” [ MR3292587], Acta Math. Vietnam., 42, 4, 775-776 (2017) · Zbl 1422.57005
[30] [HRW]HRW J. Hanselman, J. Rasmussen, and L. Watson, \it Bordered Floer homology for manifolds with torus boundary via immersed curves, preprint arXiv:1604.03466, 2016.
[31] [HRRW]HRRW J. Hanselman, J. Rasmussen, S. Rasmussen, and L. Watson, \it Taut foliations on graph manifolds, preprint arXiv:1508.05911v1, 2015.
[32] Harvey, Shelly; Kawamuro, Keiko; Plamenevskaya, Olga, On transverse knots and branched covers, Int. Math. Res. Not. IMRN, 3, 512-546 (2009) · Zbl 1160.57004
[33] Hedden, Matthew, Notions of positivity and the Ozsv\'ath-Szab\'o concordance invariant, J. Knot Theory Ramifications, 19, 5, 617-629 (2010) · Zbl 1195.57029
[34] Honda, Ko; Kazez, William H.; Mati\'c, Gordana, Right-veering diffeomorphisms of compact surfaces with boundary, Invent. Math., 169, 2, 427-449 (2007) · Zbl 1167.57008
[35] Honda, Ko; Kazez, William H.; Mati\'c, Gordana, Right-veering diffeomorphisms of compact surfaces with boundary. II, Geom. Topol., 12, 4, 2057-2094 (2008) · Zbl 1170.57013
[36] Hom, Jennifer, Satellite knots and L-space surgeries, Bull. Lond. Math. Soc., 48, 5, 771-778 (2016) · Zbl 1355.57010
[37] Howie, James; Short, Hamish, The band-sum problem, J. London Math. Soc. (2), 31, 3, 571-576 (1985) · Zbl 0546.57001
[38] Hu, Ying, Left-orderability and cyclic branched coverings, Algebr. Geom. Topol., 15, 1, 399-413 (2015) · Zbl 1312.57001
[39] Ito, Tetsuya, Braid ordering and knot genus, J. Knot Theory Ramifications, 20, 9, 1311-1323 (2011) · Zbl 1235.57006
[40] Ito, Tetsuya, Braid ordering and the geometry of closed braid, Geom. Topol., 15, 1, 473-498 (2011) · Zbl 1214.57010
[41] Ito, Tetsuya; Kawamuro, Keiko, Essential open book foliations and fractional Dehn twist coefficient, Geom. Dedicata, 187, 17-67 (2017) · Zbl 1362.57026
[42] Juh\'asz, Andr\'as, A survey of Heegaard Floer homology. New ideas in low dimensional topology, Ser. Knots Everything 56, 237-296 (2015), World Sci. Publ., Hackensack, NJ · Zbl 1315.57002
[43] Kazez, William H.; Roberts, Rachel, Fractional Dehn twists in knot theory and contact topology, Algebr. Geom. Topol., 13, 6, 3603-3637 (2013) · Zbl 1278.57025
[44] Kazez, William H.; Roberts, Rachel, Approximating \(C^{1,0} \)-foliations. Interactions between low-dimensional topology and mapping class groups, Geom. Topol. Monogr. 19, 21-72 (2015), Geom. Topol. Publ., Coventry · Zbl 1333.57030
[45] Lisca, Paolo; Stipsicz, Andr\'as I., Ozsv\'ath-Szab\'o invariants and tight contact 3-manifolds. III, J. Symplectic Geom., 5, 4, 357-384 (2007) · Zbl 1149.57037
[46] Li, Yu; Watson, Liam, Genus one open books with non-left-orderable fundamental group, Proc. Amer. Math. Soc., 142, 4, 1425-1435 (2014) · Zbl 1285.57001
[47] Malyutin, A. V., Writhe of (closed) braids, Algebra i Analiz. St. Petersburg Math. J., 16 16, 5, 791-813 (2005) · Zbl 1088.57008
[48] Morgan, John W., The Smith conjecture. The Smith conjecture, New York, 1979, Pure Appl. Math. 112, 3-6 (1984), Academic Press, Orlando, FL
[49] Milnor, John, On the existence of a connection with curvature zero, Comment. Math. Helv., 32, 215-223 (1958) · Zbl 0196.25101
[50] Matsumoto, Shigenori; Morita, Shigeyuki, Bounded cohomology of certain groups of homeomorphisms, Proc. Amer. Math. Soc., 94, 3, 539-544 (1985) · Zbl 0536.57023
[51] Morita, Shigeyuki, Geometry of differential forms, Translations of Mathematical Monographs 201, xxiv+321 pp. (2001), Iwanami Series in Modern Mathematics, American Mathematical Society, Providence, RI · Zbl 0987.58002
[52] Milnor, John W.; Stasheff, James D., Characteristic classes, vii+331 pp. (1974), Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo · Zbl 1079.57504
[53] Meeks, William, III; Simon, Leon; Yau, Shing Tung, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math. (2), 116, 3, 621-659 (1982) · Zbl 0521.53007
[54] Murasugi, Kunio, On closed \(3\)-braids, vi+114 pp. (1974), American Mathematical Society, Providence, R.I. · Zbl 0327.55001
[55] Ni, Yi, Knot Floer homology detects fibred knots, Invent. Math., 170, 3, 577-608 (2007) · Zbl 1138.57031
[56] Novikov, S. P., The topology of foliations, Trudy Moskov. Mat. Ob\vs\vc., 14, 248-278 (1965)
[57] Ozsv\'ath, Peter; Szab\'o, Zolt\'an, Holomorphic disks and genus bounds, Geom. Topol., 8, 311-334 (2004) · Zbl 1056.57020
[58] Ozsv\'ath, Peter; Szab\'o, Zolt\'an, On knot Floer homology and lens space surgeries, Topology, 44, 6, 1281-1300 (2005) · Zbl 1077.57012
[59] [Pe]Pe T. Peters, \em On L-spaces and non-left-orderable 3-manifold groups, preprint arXiv:0903.4495, 2009.
[60] Plante, J. F., Foliations with measure preserving holonomy, Ann. of Math. (2), 102, 2, 327-361 (1975) · Zbl 0314.57018
[61] Roberts, Rachel, Taut foliations in punctured surface bundles. II, Proc. London Math. Soc. (3), 83, 2, 443-471 (2001) · Zbl 1034.57018
[62] [Rol]Rol D. Rolfsen, \bf Knots and links, American Mathematical Soc. \bf 346, 2003.
[63] Rosenberg, Harold, Foliations by planes, Topology, 7, 131-138 (1968) · Zbl 0157.30504
[64] Spanier, Edwin H., Algebraic topology, xvi+528 pp. ([1995?]), Springer-Verlag, New York
[65] [Thu1]Thu1 W. Thurston, \it Hyperbolic structures on \(3\)-manifolds, II: Surface groups and \(3\)-manifolds which fiber over the circle, preprint (1986), arXiv:math.GT/9801045.
[66] Thurston, William P., On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.), 19, 2, 417-431 (1988) · Zbl 0674.57008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.