×

zbMATH — the first resource for mathematics

Multilevel preconditioning technique for Schwarz waveform relaxation domain decomposition method for real- and imaginary-time nonlinear Schrödinger equation. (English) Zbl 1427.65233
Summary: This paper is dedicated to the derivation of multilevel Schwarz Waveform Relaxation (SWR) Domain Decomposition Methods (DDM) in real- and imaginary-time for the NonLinear Schrödinger Equation (NLSE). In imaginary-time, it is shown that the multilevel SWR-DDM accelerates the convergence compared to the one-level SWR-DDM, resulting in an important reduction of the computational time and memory storage. In real-time, the method requires in addition the storage of the solution in overlapping zones at any time, but on coarser discretization levels. The method is numerically validated on the classical SWR and Robin-based SWR methods, but can however be applied to any SWR-DDM approach.
MSC:
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
Software:
GPELab
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Antoine, X.; Duboscq, R., GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of stationary solutions. GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of stationary solutions, Comput. Phys. Comm., 185, 11, 2969-2991 (2014) · Zbl 1348.35003
[2] Antoine, X.; Duboscq, R., Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating and strongly interacting Bose-Einstein condensates. Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating and strongly interacting Bose-Einstein condensates, J. Comput. Phys., 258C, 509-523 (2014) · Zbl 1349.82027
[3] Antoine, X.; Duboscq, R., Modeling and Computation of Bose-Einstein Condensates: Stationary States, Nucleation, Dynamics, Stochasticity, no. 2146. Modeling and Computation of Bose-Einstein Condensates: Stationary States, Nucleation, Dynamics, Stochasticity, no. 2146, Nonlinear Optical and Atomic Systems: at the Interface of Mathematics and Physics, CEMPI Subseries, vol. 1 (2015), Springer · Zbl 1344.35114
[4] Bao, W.; Cai, Y., Mathematical theory and numerical methods for Bose-Einstein condensation. Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6, 1, 1-135 (2013) · Zbl 1266.82009
[5] Bao, W.; Du, Q., Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow. Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25, 5, 1674-1697 (2004) · Zbl 1061.82025
[6] Fibich, G., The Nonlinear Schrödinger Equation. Singular Solutions and Optical Collapse, no. 192. The Nonlinear Schrödinger Equation. Singular Solutions and Optical Collapse, no. 192, Applied Mathematical Sciences (2015), Springer-Verlag: Springer-Verlag New York
[7] Sulem, C.; Sulem, P., The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, no. 139. The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, no. 139, Applied Mathematical Sciences (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0928.35157
[8] Antoine, X.; Lorin, E.; Bandrauk, A., Domain decomposition method and high-order absorbing boundary conditions for the numerical simulation of the time-dependent Schrödinger equation with ionization and recombination by intense electric field. Domain decomposition method and high-order absorbing boundary conditions for the numerical simulation of the time-dependent Schrödinger equation with ionization and recombination by intense electric field, J. Sci. Comput., 64, 3, 620-646 (2015) · Zbl 1332.78026
[9] Cancès, E.; Defranceschi, M.; Kutzelnigg, W.; Le Bris, C.; Maday, Y., Computational quantum chemistry: a primer. Computational quantum chemistry: a primer, Handb. Numer. Anal., 10, 3-270 (2003) · Zbl 1070.81534
[10] Bandrauk, A.; Fillion-Gourdeau, F.; Lorin, E., Atoms and molecules in intense laser fields: Gauge invariance of theory and models. Atoms and molecules in intense laser fields: Gauge invariance of theory and models, J. Phys. B Atom. Mol. Opt. Phys., 46, 15 (2013)
[11] Bandrauk, A.; Delfour, M. C.; Le Bris (Eds.), C., High-Dimensional Partial Differential Equations in Science and Engineering. (CRM Proceedings & Lecture Notes, vol. 41 (2007), American Mathematical Society: American Mathematical Society Providence, RI)
[12] Antoine, X.; Lorin, E., An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrödinger and Gross-Pitaevskii equations. An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrödinger and Gross-Pitaevskii equations, Numer. Math., 137, 4, 923-958 (2017) · Zbl 1383.65122
[13] Antoine, X.; Lorin, E., Lagrange-Schwarz waveform relaxation domain decomposition methods for linear and nonlinear quantum wave problems. Lagrange-Schwarz waveform relaxation domain decomposition methods for linear and nonlinear quantum wave problems, Appl. Math. Lett., 57, 38-45 (2016) · Zbl 1334.65152
[14] C. Besse, F. Xing, Schwarz waveform relaxation method for one-dimensional Schrödinger equation with general potential, Numerical Algorithms. 74 (2) (2017) 393-426. · Zbl 1359.65187
[15] Gander, M.; Halpern, L., Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems, SIAM J. Num. Anal., 45, 2, 666-697 (2007) · Zbl 1140.65063
[16] Gander, M., Optimal Schwarz waveform relaxation methods for the one-dimensional wave equation. Optimal Schwarz waveform relaxation methods for the one-dimensional wave equation, SIAM J. Numer. Anal., 41, 1643-1681 (2003) · Zbl 1085.65077
[17] Gander, M., Optimized Schwarz methods. Optimized Schwarz methods, SIAM J. Numer. Anal., 44, 699-731 (2006) · Zbl 1117.65165
[18] Gander, M., Optimized Schwarz waveform relaxation methods for advection diffusion problems. Optimized Schwarz waveform relaxation methods for advection diffusion problems, SIAM J. Numer. Anal., 45, 2, 666-697 (2007) · Zbl 1140.65063
[19] Gander, M.; Halpern, L.; Nataf, F., Optimal convergence for overlapping and non-overlapping Schwarz waveform relaxation. Optimal convergence for overlapping and non-overlapping Schwarz waveform relaxation, Proceedings of the Eleventh International Conference of Domain Decomposition Methods, 27-36 (1999)
[20] Lorin, E.; Yang, X.; Antoine, X., Frozen Gaussian approximation based domain decomposition methods for the linear Schrödinger equation beyond the semi-classical regime. Frozen Gaussian approximation based domain decomposition methods for the linear Schrödinger equation beyond the semi-classical regime, J. Comput. Phys., 315, 221-237 (2016) · Zbl 1349.65430
[21] Antoine, X.; Arnold, A.; Besse, C.; Ehrhardt, M.; Schädle, A., A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations, Commun. Comput. Phys., 4, 4, 729-796 (2008) · Zbl 1364.65178
[22] Halpern, L.; Szeftel, J., Optimized and quasi-optimal Schwarz waveform relaxation for the one-dimensional Schrödinger equation. Optimized and quasi-optimal Schwarz waveform relaxation for the one-dimensional Schrödinger equation, Math. Models Methods Appl. Sci., 20, 12, 2167-2199 (2010) · Zbl 1213.35192
[23] Antoine, X.; Bao, W.; Besse, C., Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations. Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Commun., 184, 12, 2621-2633 (2013) · Zbl 1344.35130
[24] Givoli, D., High-order local non-reflecting boundary conditions: a review. High-order local non-reflecting boundary conditions: a review, Wave Motion, 39, 4, 319-326 (2004) · Zbl 1163.74356
[25] Tsynkov, S., Numerical solution of problems on unbounded domains. A review. Numerical solution of problems on unbounded domains. A review, Appl. Numer. Math., 27, 4, 465-532 (1998) · Zbl 0939.76077
[26] Dolean, V.; Gander, M. J.; Gerardo-Giorda, L., Optimized Schwarz methods for Maxwell’s equations. Optimized Schwarz methods for Maxwell’s equations, SIAM J. Sci. Comput., 31, 3, 2193-2213 (2009) · Zbl 1192.78044
[27] El Bouajaji, M.; Dolean, V.; Gander, M. J.; Lanteri, S., Optimized Schwarz methods for the time-harmonic Maxwell equations with damping. Optimized Schwarz methods for the time-harmonic Maxwell equations with damping, SIAM J. Sci. Comput., 34, 4, A2048-A2071 (2012) · Zbl 1259.78047
[28] Antoine, X.; Hou, F.; Lorin, E., Asymptotic estimates of the convergence of classical Schwarz waveform relaxation domain decomposition methods for two-dimensional stationary quantum waves. Asymptotic estimates of the convergence of classical Schwarz waveform relaxation domain decomposition methods for two-dimensional stationary quantum waves, ESAIM: M2AN (2018) · Zbl 1407.65152
[29] Antoine, X.; Besse, C.; Descombes, S., Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations. Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations, SIAM J. Numer. Anal., 43, 6, 2272-2293 (2006) · Zbl 1109.35102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.