On separable higher Gauss maps. (English) Zbl 1427.14112

Let \(X\subset \mathbb {P}^N\) be an integral and non-degenerate variety defined over an algebraically closed field. Let \(X^\ast\) denote the dual variety of \(X\). For any integer \(m\) such that \(n\leq m<N\) let \(G(m,N)\) be the Grassmannian of all \(m\)-dimensional linear subspace of \(\mathbb {P}^N\). The \(m\)-th Gauss map \(\gamma _m\) of \(X\) (in the sense of Zak) is the rational map \(X\dashrightarrow G(m,N)\) sending each \(p\in X_{\mathrm{reg}}\) to the set of all \(A\in G(m,N)\) containing \(T_pX\). The authors proves that the general fiber of \(\gamma _m\) is a linear space if \(\gamma _m\) is separable. Then (without assuming the separability of \(\gamma _m\)) they study the \(m\)-defect \(\delta _m:= \dim \gamma _m(X_{\mathrm{reg}}) -\dim X^\ast\). If \(N\ge n+3\), \(X\) is smooth and \(\delta_{n+1}\) is separable, they prove that the following are equivalent:
(1) \(\delta _{n+i}=0\) for an integer \(i\) such that \(0<i<N-n-1\);
(2) \(\delta _{n+i}=0\) for all integers \(i\) such that \(0\leq i\leq N-n-1\);
(3) \(X\) is the image of the Segre embedding \(\mathbb {P}^1\times \mathbb {P}^{n-1} \to \mathbb {P}^{2n-1}\).
This theorem is related Ein’s classification of smooth variety with high defect, i.e. with low dimensional \(X^\ast\).


14N05 Projective techniques in algebraic geometry
14J40 \(n\)-folds (\(n>4\))
14M15 Grassmannians, Schubert varieties, flag manifolds
14M07 Low codimension problems in algebraic geometry
Full Text: DOI arXiv Euclid


[1] E. Ballico, On the Gauss maps of singular projective varieties, J. Aust. Math. Soc. 72 (2002), 119-130. · Zbl 1080.14543
[2] C. Ciliberto and K. Hulek, A bound on the irregularity of Abelian scrolls in projective space, Complex geometry (Göttingen, 2000), 85-92, Springer, Berlin, 2002. · Zbl 1005.14018
[3] L. Ein, Varieties with small dual varieties, I, Invent. Math. 86 (1986), 63-74. · Zbl 0603.14025
[4] G. Fischer and J. Piontkowski, Ruled varieties, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 2001. · Zbl 0976.14025
[5] S. Fukasawa, Developable varieties in positive characteristic, Hiroshima Math. J. 35 (2005), 167-182. · Zbl 1080.14061
[6] S. Fukasawa, Varieties with non-linear Gauss fibers, Math. Ann. 334 (2006), 235-239. · Zbl 1093.14073
[7] S. Fukasawa, On Kleiman-Piene’s question for Gauss maps, Compos. Math. 142 (2006), 1305-1307. · Zbl 1107.14044
[8] S. Fukasawa, A remark on Kleiman-Piene’s question for Gauss maps, Comm. Algebra 35 (2007), 1201-1204. · Zbl 1118.14057
[9] K. Furukawa, Duality with expanding maps and shrinking maps, and its applications to Gauss maps, Math. Ann. 358 (2014), 403-432. · Zbl 1344.14031
[10] K. Furukawa and A. Ito, Gauss maps of toric varieties, Tohoku Math. J. (2) 69 (2017), 431-454. · Zbl 1391.14102
[11] K. Furukawa and A. Ito, On Gauss maps in positive characteristic in view of images, fibers, and field extensions, Int. Math. Res. Not. 2017, no. 8, 2337-2366. · Zbl 1405.14127
[12] P. Griffiths and J. Harris, Algebraic geometry and local differential geometry, Ann. Sci. École Norm. Sup. (4) 12 (1979), 355-432. · Zbl 0426.14019
[13] A. Hefez and S. Kleiman, Notes on the duality of projective varieties, Geometry today (Rome, 1984), Progr. Math., 60, 143-183, Birkhäuser Boston, Boston, MA, 1985.
[14] T. A. Ivey and J. M. Landsberg, Cartan for beginners: differential geometry via moving frames and exterior differential systems, Graduate Studies in Mathematics, 61, American Mathematical Society, Providence, RI, 2003. · Zbl 1105.53001
[15] H. Kaji, On the tangentially degenerate curves, J. Lond. Math. Soc. (2) 33 (1986), 430-440. · Zbl 0565.14017
[16] H. Kaji, On the Gauss maps of space curves in characteristic \(p\), Compositio Math. 70 (1989), 177-197. · Zbl 0692.14015
[17] H. Kaji, On the duals of Segre varieties, Geom. Dedicata 99 (2003), 221-229. · Zbl 1027.14025
[18] H. Kaji, Higher Gauss maps of Veronese varieties–a generalization of Boole’s formula and degree bounds for higher Gauss map images, Comm. Algebra 46 (2018), 4064-4078. · Zbl 1430.14101
[19] S. L. Kleiman, Plane forms and multiple-point formulas, Algebraic threefolds (Varenna, 1981), Lecture Notes in Math., 947, 287-310, Springer, Berlin-New York, 1982.
[20] S. L. Kleiman, Tangency and duality, Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conf. Proc., 6, 163-226, Amer. Math. Soc., Providence, RI, 1986.
[21] S. L. Kleiman and R. Piene, On the inseparability of the Gauss map, Enumerative algebraic geometry (Copenhagen, 1989), Contemp. Math., 123, 107-129, Amer. Math. Soc., Providence, RI, 1991. · Zbl 0758.14032
[22] R. Lazarsfeld, Positivity in algebraic geometry I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 48, Springer-Verlag, Berlin, 2004.
[23] A. Noma, Gauss maps with nontrivial separable degree in positive characteristic, J. Pure Appl. Algebra 156 (2001), 81-93. · Zbl 0974.14037
[24] J. Rathmann, The uniform position principle for curves in characteristic \(p\), Math. Ann. 276 (1987), 565-579. · Zbl 0595.14041
[25] J. C. Sierra, A remark on Zak’s theorem on tangencies, Math. Res. Lett. 18 (2011), 783-789. · Zbl 1275.14042
[26] R. Speiser, Vanishing criteria and the Picard group for projective varieties of low codimension, Compositio Math. 42 (1980/81), 13-21. · Zbl 0471.14027
[27] A. H. Wallace, Tangency and duality over arbitrary fields, Proc. London Math. Soc. (3) 6 (1956), 321-342. · Zbl 0072.16002
[28] F. L. Zak, Tangents and secants of algebraic varieties, Translations of Mathematical Monographs, 127, American Mathematical Society, Providence, RI, 1993. · Zbl 0795.14018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.