zbMATH — the first resource for mathematics

Polynomial semantics for modal logics. (English) Zbl 1444.03039
Summary: It is shown here that the modal logic \(K\) and any extension of it with a finite number of axioms can be characterised by a polynomial semantics. Moreover, some comments are made about the possibility of using algebraic computation to determine deducibility on these logics.
03B45 Modal logic (including the logic of norms)
13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)
Full Text: DOI
[1] Adams, W. W.; Loustaunau, P., An introduction to Gröbner bases, 3 (1994), Providence, RI: American Mathematical Society, Providence, RI
[2] Agudelo-Agudelo, J. C.; Agudelo-González, C. A.; García-Quintero, O. E., On polynomial semantics for propositional logics, Journal of Applied Non-Classical Logics, 26, 2, 103-125 (2016) · Zbl 1398.03134
[3] Agudelo-Agudelo, J. C.; Carnielli, W., Polynomial ring calculus for modalities, Journal of Logic and Computation, 27, 6, 1853-1870 (2017) · Zbl 1444.03038
[4] Agudelo, J. C.; Carnielli, W., Polynomial ring calculus for modal logics: A new semantics and proof method for modalities, The Review of Symbolic Logic, 4, 1, 150-170 (2011) · Zbl 1233.03027
[5] Baader, F.; Nipkow, T., Term rewriting and all that (1998), New York, NY: Cambridge University Press, New York, NY
[6] Blackburn, P., & van Benthem, J. (2006). Modal logic: A semantic perspective. In P. Blackburn, J. van Benthem, & F. Wolter (Eds.), Handbook of modal logic (pp. 1-82). North-Holland: Elsevier.
[7] Brickenstein, M.; Dreyer, A., Polybori: A framework for Gröbner-basis computations with boolean polynomials, Journal of Symbolic Computation, 44, 9, 1326-1345 (2009) · Zbl 1186.68571
[8] Carnielli, W., Polynomial ring calculus for logical inference, CLE e-Prints, 5, 1-17 (2005)
[9] Carnielli, W.; Matulovic, M., The method of polynomial ring calculus and its potentialities, Theoretical Computer Science, 606, 42-56 (2015) · Zbl 1338.03012
[10] Chazarain, J.; Riscos, A.; Alonso, J. A.; Briales, E., Multivalued logic and Gröbner bases with applications to modal logic, Journal of Symbolic Computation, 11, 181-194 (1991) · Zbl 0728.03021
[11] Cox, D.; Little, J.; O’Shea, D., Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra (2007), New York, NY: Springer, New York, NY · Zbl 1118.13001
[12] Hernando, A.; Roanes-Lozano, E.; Laita, L. M., A polynomial model for logics with a prime power number of truth values, Journal of Automated Reasoning, 46, 205-221 (2011) · Zbl 1231.03023
[13] Jansana, R.; Zalta, E. N., Propositional consequence relations and algebraic logic, The Stanford encyclopedia of philosophy (2011), Standford, CA: Metaphysics Research Lab, Stanford University, Standford, CA
[14] Laita, L. M.; Roanes-Lozano, E.; De Ledesma, L.; Alonso, J. A., A computer algebra approach to verification and deduction in many-valued knowledge systems, Soft Computing, 3, 7-19 (1999)
[15] Roanes-Lozano, E.; Laita, L. M.; Roanes-Macías, E., A polynomial model for multi-valued logics with a touch of algebraic geometry and computer algebra, Mathematics and Computers in Simulation, 45, 83-99 (1998) · Zbl 1017.03509
[16] Sato, Y.; Inoue, S.; Suzuki, A.; Nabeshimac, K.; Sakai, K., Boolean Gröbner Bases, Journal of Symbolic Computation, 46, 622-632 (2011) · Zbl 1211.68519
[17] Wu, J., & Tan, H. (1994). An algebraic method to decide the deduction problem in many-valued propositional calculus. In IEEE (Ed.), Proceedings of 24th international symposium on multiple-valued logic (pp. 270-273), Boston, MA.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.