×

zbMATH — the first resource for mathematics

An arbitrary precision scaling and squaring algorithm for the matrix exponential. (English) Zbl 1437.65033

MSC:
65F60 Numerical computation of matrix exponential and similar matrix functions
15A16 Matrix exponential and similar functions of matrices
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. H. Al-Mohy, A truncated Taylor series algorithm for computing the action of trigonometric and hyperbolic matrix functions, SIAM J. Sci. Comput., 40 (2018), pp. A1696–A1713, https://doi.org/10.1137/17M1145227.
[2] A. H. Al-Mohy and N. J. Higham, A new scaling and squaring algorithm for the matrix exponential, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 970–989, https://doi.org/10.1137/09074721X. · Zbl 1194.15021
[3] A. H. Al-Mohy and N. J. Higham, Improved inverse scaling and squaring algorithms for the matrix logarithm, SIAM J. Sci. Comput., 34 (2012), pp. C153–C169, https://doi.org/10.1137/110852553.
[4] A. H. Al-Mohy, N. J. Higham, and S. D. Relton, New algorithms for computing the matrix sine and cosine separately or simultaneously, SIAM J. Sci. Comput., 37 (2015), pp. A456–A487, https://doi.org/10.1137/140973979.
[5] M. Aprahamian and N. J. Higham, Matrix inverse trigonometric and inverse hyperbolic functions: Theory and algorithms, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 1453–1477, https://doi.org/10.1137/16M1057577. · Zbl 1388.15012
[6] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to numerical computing, SIAM Rev., 59 (2017), pp. 65–98, https://doi.org/10.1137/141000671. · Zbl 1356.68030
[7] M. Caliari and F. Zivcovich, On-the-fly backward error estimate for matrix exponential approximation by Taylor algorithm, J. Comput. Appl. Math., 346 (2019), pp. 532–548, https://doi.org/10.1016/j.cam.2018.07.042. · Zbl 1452.65082
[8] E. Defez, J. Sastre, J. Ibán͂ez, and J. Peinado, Solving engineering models using hyperbolic matrix functions, Appl. Math. Model., 40 (2016), pp. 2837–2844, https://doi.org/10.1016/j.apm.2015.09.050.
[9] N. J. Dingle and N. J. Higham, Reducing the influence of tiny normwise relative errors on performance profiles, ACM Trans. Math. Software, 39 (2013), 24, https://doi.org/10.1145/2491491.2491494. · Zbl 1298.65086
[10] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), pp. 201–213, https://doi.org/10.1007/s101070100263.
[11] M. Fasi, Optimality of the Paterson–Stockmeyer method for evaluating matrix polynomials and rational matrix functions, Linear Algebra Appl., 574 (2019), pp. 182–200, https://doi.org/10.1016/j.laa.2019.04.001. · Zbl 1431.65062
[12] M. Fasi and N. J. Higham, Multiprecision algorithms for computing the matrix logarithm, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 472–491, https://doi.org/10.1137/17M1129866. · Zbl 1390.15073
[13] M. Fasi, N. J. Higham, and B. Iannazzo, An algorithm for the matrix Lambert \(W\) function, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 669–685, https://doi.org/10.1137/140997610. · Zbl 1317.65116
[14] W. Gautschi, Numerical Analysis, Birkhäuser, Basel, 2011.
[15] G. I. Hargreaves and N. J. Higham, Efficient algorithms for the matrix cosine and sine, Numer. Algorithms, 40 (2005), pp. 383–400, https://doi.org/10.1007/s11075-005-8141-0. · Zbl 1084.65039
[16] N. J. Higham, The Matrix Function Toolbox, https://www.maths.manchester.ac.uk/ higham/mftoolbox.
[17] N. J. Higham, The scaling and squaring method for the matrix exponential revisited, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 1179–1193, https://doi.org/10.1137/04061101X. · Zbl 1081.65037
[18] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008, https://doi.org/10.1137/1.9780898717778.
[19] N. J. Higham, The scaling and squaring method for the matrix exponential revisited, SIAM Rev., 51 (2009), pp. 747–764, https://doi.org/10.1137/090768539. · Zbl 1178.65040
[20] N. J. Higham and P. Kandolf, Computing the action of trigonometric and hyperbolic matrix functions, SIAM J. Sci. Comput., 39 (2017), pp. A613–A627, https://doi.org/10.1137/16M1084225. · Zbl 1365.65135
[21] N. J. Higham and L. Lin, A Schur–Padé algorithm for fractional powers of a matrix, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1056–1078, https://doi.org/10.1137/10081232X. · Zbl 1242.65091
[22] N. J. Higham and L. Lin, An improved Schur–Padé algorithm for fractional powers of a matrix and their Fréchet derivatives, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1341–1360, https://doi.org/10.1137/130906118. · Zbl 1279.65050
[23] N. J. Higham and M. I. Smith, Computing the matrix cosine, Numer. Algorithms, 34 (2003), pp. 13–26, https://doi.org/10.1023/A:1026152731904.
[24] N. J. Higham and F. Tisseur, A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1185–1201, https://doi.org/10.1137/S0895479899356080. · Zbl 0959.65061
[25] F. Johansson, Arb: Efficient arbitrary-precision midpoint-radius interval arithmetic, IEEE Trans. Comput., 66 (2017), pp. 1281–1292, https://doi.org/10.1109/tc.2017.2690633. · Zbl 1388.65037
[26] F. Johansson et al., Mpmath: A Python library for arbitrary-precision floating-point arithmetic, http://mpmath.org.
[27] D. Lago and F. Rahnema, Development of a set of benchmark problems to verify numerical methods for solving burnup equations, Annals of Nuclear Energy, 99 (2017), pp. 266–271, https://doi.org/10.1016/j.anucene.2016.09.004.
[28] E. N. Laguerre, Le calcul des systèmes linéaires, extrait d’une lettre adressé à M. Hermite, in Oeuvres de Laguerre, Vol. 1, C. Hermite, H. Poincaré, and E. Rouché, eds., Gauthier–Villars, Paris, France, 1898, pp. 221–267, http://gallica.bnf.fr/ark:/12148/bpt6k90210p/f242.table.
[29] J. D. Lawson, Generalized Runge–Kutta processes for stable systems with large Lipschitz constants, SIAM J. Numer. Anal., 4 (1967), pp. 372–380, https://doi.org/10.1137/0704033. · Zbl 0223.65030
[30] Maple, Waterloo Maple, Inc., Waterloo, Ontario, Canada, https://www.maplesoft.com.
[31] Mathematica, Wolfram Research, Inc., Champaign, IL, https://www.wolfram.com.
[32] K. Meerbergen, A. Spence, and D. Roose, Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices, BIT, 34 (1994), pp. 409–423, https://doi.org/10.1007/bf01935650. · Zbl 0814.65037
[33] C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, SIAM Rev., 20 (1978), pp. 801–836, https://doi.org/10.1137/1020098. · Zbl 0395.65012
[34] C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 45 (2003), pp. 3–49, https://doi.org/10.1137/S00361445024180. · Zbl 1030.65029
[35] Multiprecision Computing Toolbox, Advanpix, Tokyo, https://www.advanpix.com.
[36] P. Nadukandi and N. J. Higham, Computing the wave-kernel matrix functions, SIAM J. Sci. Comput., 40 (2018), pp. A4060–A4082, https://doi.org/10.1137/18M1170352.
[37] M. S. Paterson and L. J. Stockmeyer, On the number of nonscalar multiplications necessary to evaluate polynomials, SIAM J. Comput., 2 (1973), pp. 60–66, https://doi.org/10.1137/0202007. · Zbl 0262.65033
[38] M. Pusa, Rational approximations to the matrix exponential in burnup calculations, Nucl. Sci. Eng., 169 (2011), pp. 155–167, https://doi.org/10.13182/nse10-81.
[39] The Sage Developers, Sage Mathematics Software, https://www.sagemath.org.
[40] J. Sastre, J. Ibán͂ez, P. Ruiz, and E. Defez, Accurate and efficient matrix exponential computation, Internat. J. Comput. Math., 91 (2014), pp. 97–112, https://doi.org/10.1080/00207160.2013.791392.
[41] Symbolic Math Toolbox, The MathWorks, Inc., Natick, MA, https://www.mathworks.co.uk/products/symbolic/.
[42] C. F. Van Loan, The sensitivity of the matrix exponential, SIAM J. Numer. Anal., 14 (1977), pp. 971–981, https://doi.org/10.1137/0714065.
[43] S. Zhao, Matrix Exponential Approximation for Burnup Equation, M.Sc. thesis, The University of Manchester, Manchester, UK, 2017.
[44] P. Zimmermann, A. Casamayou, N. Cohen, G. Connan, T. Dumont, L. Fousse, F. Maltey, M. Meulien, M. Mezzarobba, C. Pernet, N. M. Thiéry, E. Bray, J. Cremona, M. Forets, A. Ghitza, and H. Thomas, Computational Mathematics with SageMath, SIAM, Philadelphia, 2018, https://doi.org/10.1137/1.9781611975468. · Zbl 1434.65001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.