×

Nonlocal Schrödinger equations for integro-differential operators with measurable kernels. (English) Zbl 1433.35092

Summary: In this paper we investigate the existence of positive solutions for the problem \[-\mathcal{L}_Ku+V(x)u=f(u) \] in \(\mathbb R^N\), where \(-\mathcal{L}_K\) is an integro-differential operator with measurable kernel \(K\). Under apropriate hypotheses, we prove by variational methods that this equation has a nonnegative solution.

MSC:

35J60 Nonlinear elliptic equations
35J10 Schrödinger operator, Schrödinger equation

References:

[1] G. Alberti and G. Bellettini, A nonlocal anisotropic model for phase transitions, Math. Ann. 310 (1998), 527-560. · Zbl 0891.49021 · doi:10.1007/s002080050159
[2] C.O. Alves and O.H. Miyagaki, A critical nonlinear fractional elliptic equation with saddle-like potential in \(\mathbb{R}^N \), J. Math. Phys. 57 (2016), 081501. · Zbl 1346.35205
[3] C.O. Alves and M.A.S. Souto, Existence of solutions for a class of elliptc equations in \(\mathbb{R}^n\) with vanishing potentials, J. Differential Equations 252 (2012), 5555-5568. · Zbl 1250.35103
[4] V. Ambrosio, Ground state for superlinear fractional Schrödinger equations in \(\mathbb{R}^N \), Ann. Acad. Sci. Fenn. Math. 41 (2016), 745-756. · Zbl 1365.35196
[5] V. Ambrosio, A fractional Landesman-Lazer type problem set on \(\mathbb{R}^N \), Matematiche (Catania) 71 (2017), 99-116. · Zbl 1371.35088
[6] A.L. Bertozzi, J.B. Garnett and T. Laurent, Characterization of radially symmetric finite time blowup in multidimensional aggregation equations, SIAM J. Math. Anal. 44 (2012), 651-681. · Zbl 1248.35023 · doi:10.1137/11081986X
[7] G.M. Bisci and V.D. Radulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equations 54 (2015), 2985-3008. · Zbl 1330.35495
[8] C. Bucur, Some observations on the Green function for the ball in the fractional Laplace framework, Commun. Pure Appl. Anal. 15 (2016), 657-699. · Zbl 1334.35383 · doi:10.3934/cpaa.2016.15.657
[9] C. Bucur and E. Valdinoci, Nonlocal diffusion and applications, Lecture Notes of the Unione Matematica Italiana, Springer International Publishing (ISBN 978-3-319-28738-6), 20 (2016), pp.,xii+155. · Zbl 1377.35002
[10] X. Cabre and X. Solà-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math. 58 (2005), 1678-1732. · Zbl 1102.35034
[11] L. Caffarelli and L. Silvestre, An extension problem related to the fractional laplacian, Comm. Partial Differential Equations 32 (2007), 1245-1260. · Zbl 1143.26002 · doi:10.1080/03605300600987306
[12] X. Chang, Ground states of some fractional Schrödinger equations on \(\mathbb{R}^N \), Proc. Edinb. Math. Soc. (2) 58 (2015), 305-321. · Zbl 1327.35396
[13] X. Chang, Ground state solutions of asymptotically linear fractional Schrödinger equations, J. Math. Phys. 54 (2013), 061504. · Zbl 1282.81072
[14] C. Chen, Infinitely many solutions for fractional Schrödinger equations in \(\mathbb{R}^N \), Electron. J. Differential Equations 88 (2016), 1-15. · Zbl 1342.35433
[15] M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys. 53 (2012), 043507. · Zbl 1275.81030 · doi:10.1063/1.3701574
[16] P. d’Avenia, M. Squassina and M. Zenari, Fractional logarithmic Schrödinger equations, Math. Methods Appl. Sci. 38 (2015), 5207-5216. · Zbl 1334.35408
[17] A. Di Castro, T. Kuusi and G. Palatucci, Local behavior of fractional p-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2015), 1279-1299. · Zbl 1355.35192
[18] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521-573. · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[19] S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Matematiche (Catania) 68 (2013), 201-216. · Zbl 1287.35023
[20] R.C. Duarte and M.A.S. Souto, Fractional Schrödinger-Poisson equations with general nonlinearities, Electron. J. Differential Equations 319 (2016), 1-19. · Zbl 1361.35192
[21] M.M. Fall and E. Valdinoci, Uniqueness and nondegeneracy of positive solutions of \((-\Delta)^su + u = u^p\) in \(\mathbb{R}^N\) when \(s\) is close to \(1\), Comm. Math. Phys. 329 (2014), 383-404. · Zbl 1304.35746
[22] P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional laplacian, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), 1237-1262. · Zbl 1290.35308
[23] G. Franzina and G. Palatucci, Fractional \(p\)-eigenvalues, Riv. Math. Univ. Parma 5 (2014), 315-328. · Zbl 1327.35286
[24] G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul. 7 (2008), 1005-1028. · Zbl 1181.35006 · doi:10.1137/070698592
[25] T. Gou and H. Sun, Solutions of nonlinear Schrödinger equation with fractional laplacian without the Ambrosetti-Rabinowitz condition, Appl. Math. Comput. 257 (2015), 409-416. · Zbl 1338.35463
[26] S. Khoutir and H. Chen, Existence of infinitely many high energy solutions for a fractional Schrödinger equation in \(\mathbb{R}^N \), Appl. Math. Lett. 61 (2016), 156-162. · Zbl 1386.35444
[27] R. Lehrer, L.A. Maia and M. Squassina, Asymptotically linear fractional Schrodinger equations, Complex Var. Elliptic Equ. 60 (2015), 529-558. · Zbl 1319.35289 · doi:10.1080/17476933.2014.948434
[28] E.C. Oliveira, F.S. Costa and J. Jr. Vaz, The fractional Schrödinger equation for delta potentials, J. Math. Phys. 51 (2010), 123517. · Zbl 1314.81082 · doi:10.1063/1.3525976
[29] S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in \(\mathbb{R}^N \), J. Math. Phys. 54 (2013), 031501. · Zbl 1281.81034
[30] S. Secchi, On fractional Schrödinger equations in \(\mathbb{R}^N\) without the Ambrosetti-Rabinowitz condition, Topol. Methods Nonlinear Anal. 47 (2016), 19-41. · Zbl 1362.35290
[31] R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389 (2012), 887-898. · Zbl 1234.35291 · doi:10.1016/j.jmaa.2011.12.032
[32] R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst. 33 (2013), 2105-2137. · Zbl 1303.35121
[33] D. Siegel and E. Talvila, Pointwise growth estimates of the Riesz potential, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 5 (1999), 185-194. · Zbl 0952.35017
[34] M. Souza and Y.L. Araújo, On nonlinear perturbations of a periodic fractional Schrödinger equation with critical exponential growth, Math. Nachr. 5 (2016), 610-625. · Zbl 1381.35216
[35] K. Teng, Multiple solutions for a class of fractional Schrödinger equations in \(\mathbb{R}^N \), Nonlinear Anal. Real World Appl. 21 (2015), 76-86. · Zbl 1302.35415
[36] K. Teng and X. He, Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent, Commun. Pure Appl. Anal. 15 (2016), 991-1008. · Zbl 1334.35402
[37] Y. Wan and Z. Wang, Bound state for fractional Schrödinger equation with saturable nonlinearity, Appl. Math. Comput. 273 (2016), 735-740. · Zbl 1410.35279
[38] Q. Wang, D. Zhao and K. Wang, Existence of solutions to nonlinear fractional Schrödinger equations with singular potentials, Electron. J. Differential Equations 218 (2016), 1-19. · Zbl 1348.35300
[39] M. Willem, Minimax Theorems, Birkhäuser, 1996.
[40] J. Xu, Z. Wei and W. Dong, Existence of weak solutions for a fractional Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul. 22 (2015), 1215-1222. · Zbl 1331.35379
[41] L. Yang and Z. Liu, Multiplicity and concentration of solutions for fractional Schrödinger equation with sublinear perturbation and steep potential well, Comput. Math. Appl. 72 (2016), 1629-1640. · Zbl 1365.35221
[42] W. Zhang, X. Tang and J. Zhang, Infinitely many radial and non-radial solutions for a fractional Schrödinger equation, Comput. Math. Appl. 71 (2016), 737-747. · Zbl 1359.35219
[43] H. Zhang, J. Xu and F. Zhang, Existence and multiplicity of solutions for superlinear fractional Schrödinger equations in \(\mathbb{R}^N \), J. Math. Phys. 56 (2015), 091502. · Zbl 1328.35225
[44] X. Zhang, B. Zhang and D. Repovs, Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials, Nonlinear Anal. 142 (2016), 48-68. · Zbl 1338.35013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.