×

The global existence of solutions in time for a chemotaxis model with two chemicals. (English) Zbl 1437.92020

Summary: This paper concerns the uniform boundedness and global existence of solutions in time for the chemotaxis model with two chemicals. We prove the system has global existence of solutions in time for any dimension \(n\).

MSC:

92C17 Cell movement (chemotaxis, etc.)
35K57 Reaction-diffusion equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Keller, E.; Segel, L., Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology, 26, 399-415 (1970) · Zbl 1170.92306
[2] Osaki, K.; Yagi, A., Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcialaj Ekvacioj, 44, 3, 441-469 (2001) · Zbl 1145.37337
[3] Horstmann, D., From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresbericht der Deutschen Mathematiker-Vereinigung, 105, 103-165 (2003) · Zbl 1071.35001
[4] Horstmann, D., From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II, Jahresbericht der Deutschen Mathematiker-Vereinigung, 106, 2, 51-69 (2004) · Zbl 1072.35007
[5] Hillen, T.; Painter, K. J., A user’s guide to PDE models for chemotaxis, Journal of Mathematical Biology, 58, 1-2, 183-217 (2009) · Zbl 1161.92003
[6] Painter, K. J.; Maini, P. K.; Othmer, H. G., Development and applications of a model for cellular response to multiple chemotactic cues, Journal of Mathematical Biology, 41, 4, 285-314 (2000) · Zbl 0969.92003
[7] Turing, A. M., The chemical basis for morphogenesis, Philosophical Transactions of the Royal Society of London B, 237, 37-72 (1952) · Zbl 1403.92034
[8] Dillon, R.; Maini, P. K.; Othmer, H. G., Pattern formation in generalized Turing systems. I. Steady-state patterns in systems with mixed boundary conditions, Journal of Mathematical Biology, 32, 4, 345-393 (1994) · Zbl 0829.92001
[9] Othmer, H. G.; Aldridge, J. A., The effects of cell density and metabolite flux on cellular dynamics, Journal of Mathematical Biology, 5, 2, 169-200 (1978) · Zbl 0398.92007
[10] Amann, H., Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differential and Integral Equations, 3, 1, 13-75 (1990) · Zbl 0729.35062
[11] Amann, H., Dynamic theory of quasilinear parabolic systems. III. Global existence, Mathematische Zeitschrift, 202, 2, 219-250 (1989) · Zbl 0702.35125
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.