×

A new AILC for a class of nonlinearly parameterized systems with unknown delays and input dead-zone. (English) Zbl 1437.93059

Summary: This paper presents an adaptive iterative learning control (AILC) scheme for a class of nonlinear systems with unknown time-varying delays and unknown input dead-zone. A novel nonlinear form of deadzone nonlinearity is presented. The assumption of identical initial condition for ILC is removed by introducing boundary layer functions. The uncertainties with time-varying delays are compensated for with assistance of appropriate Lyapunov-Krasovskii functional and Young’s inequality. The hyperbolic tangent function is employed to avoid the possible singularity problem. According to a property of hyperbolic tangent function, the system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapunov-like composite energy function (CEF) in two cases, while maintaining all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.

MSC:

93C40 Adaptive control/observation systems
93C10 Nonlinear systems in control theory
93B51 Design techniques (robust design, computer-aided design, etc.)
93E35 Stochastic learning and adaptive control
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Arimoto, S.; Kawamrua, S.; Miyazaki, F., Bettering operation of robots by learning, Journal of Robotic Systems, 11, 2, 123-140 (1984)
[2] Oh, S.; Bien, Z.; Suh, I. H., An iterative learning control method with application for the robot manipulator, IEEE Transactions on Robotics and Automation, 4, 5, 508-514 (1988)
[3] Kuc, T. Y.; Nam, K.; Lee, J. S., An iterative learning control of robot manipulators, IEEE Transactions on Robotics and Automation, 7, 6, 835-841 (1991)
[4] Owens, D. H., Universal iterative learning control using adaptive high-gain feedback, International Journal of Adaptive Control and Signal Processing, 7, 5, 383-388 (1993) · Zbl 0796.93069
[5] Jang, T.-J.; Choi, C.-H.; Ahn, H.-S., Iterative learning control in feedback systems, Automatica, 31, 2, 243-248 (1995) · Zbl 0830.93034
[6] Chien, C.-J.; Liu, J.-S., A P-type iterative learning controller for robust output tracking of nonlinear time-varying systems, International Journal of Control, 64, 2, 319-334 (1996) · Zbl 0863.93040
[7] Moon, J. H.; Doh, T. Y.; Chung, M. J., A robust approach to iterative learning control design for uncertain systems, Automatica, 34, 8, 1001-1004 (1998)
[8] Wang, D., Convergence and robustness of discrete time nonlinear systems with iterative learning control, Automatica, 34, 11, 1445-1448 (1998)
[9] Saab, S. S., On a discrete-time stochastic learning control algorithm, IEEE Transaction on Automatic Control, 46, 8, 1333-1336 (2001) · Zbl 1008.93069
[10] Sun, M.; Wang, D., Iterative learning control with initial rectifying action, Automatica, 38, 7, 1177-1182 (2002) · Zbl 1002.93508
[11] Chen, H.-F.; Fang, H.-T., Output tracking for nonlinear stochastic systems by iterative learning control, IEEE Transaction on Automatic Control, 49, 4, 583-588 (2004) · Zbl 1365.93475
[12] Madady, A., PID type iterative learning control with optimal gains, International Journal of Control Automation and Systems, 6, 2, 194-203 (2008)
[13] French, M.; Rogers, E., Non-linear iterative learning by an adaptive Lyapunov technique, International Journal of Control, 73, 10, 840-850 (2000) · Zbl 1006.93596
[14] Choi, J. Y.; Lee, J. S., Adaptive iterative learning control of uncertain robotic systems, IEE Proceedings—Control Theory and Application, 147, 2, 217-223 (2000)
[15] Xu, J.-X.; Viswanathan, B., Adaptive robust iterative learning control with dead zone scheme, Automatica, 36, 1, 91-99 (2000) · Zbl 0939.93018
[16] Xu, J.-X.; Tan, Y., A composite energy function-based learning control approach for nonlinear systems with time-varying parametric uncertainties, IEEE Transactions on Automatic Control, 47, 11, 1940-1945 (2002) · Zbl 1364.93891
[17] Tian, Y.-P.; Yu, X., Robust learning control for a class of nonlinear systems with periodic and aperiodic uncertainties, Automatica, 39, 11, 1957-1966 (2003) · Zbl 1051.93039
[18] Tayebi, A., Adaptive iterative learning control for robot manipulators, Automatica, 40, 7, 1195-1203 (2004) · Zbl 1051.93038
[19] Xu, J.-X.; Tan, Y.; Lee, T.-H., Iterative learning control design based on composite energy function with input saturation, Automatica, 40, 8, 1371-1377 (2004) · Zbl 1077.93057
[20] Xu, J. X.; Xu, J., On iterative learning from different tracking tasks in the presence of time-varying uncertainties, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics, 34, 1, 589-597 (2004)
[21] Sun, M. X.; Ge, S. S., Adaptive repetitive control for a class of nonlinearly parametrized systems, IEEE Transaction on Automatic Control, 51, 10, 1684-1688 (2006) · Zbl 1366.93302
[22] Chi, R. H.; Hou, Z. S.; Xu, J. X., Adaptive ILC for a class of discrete-time systems with iteration-varying trajectory and random initial condition, Automatica, 44, 8, 2207-2213 (2008) · Zbl 1283.93329
[23] Chien, C. J.; Hsu, C. T.; Yao, C. Y., Fuzzy system-based adaptive iterative learning control for nonlinear plants with initial state errors, IEEE Transactions on Fuzzy Systems, 12, 5, 724-732 (2004)
[24] Tayebi, A.; Chien, C.-J., A unified adaptive iterative learning control framework for uncertain nonlinear systems, IEEE Transactions on Automatic Control, 52, 10, 1907-1913 (2007) · Zbl 1366.93303
[25] Chien, C. J., A combined adaptive law for fuzzy iterative learning control of nonlinear systems with varying control tasks, IEEE Transaction on Fuzzy Systems, 16, 1, 40-51 (2008)
[26] Wang, Y.-C.; Chien, C.-J., Decentralized adaptive fuzzy neural iterative learning control for nonaffine nonlinear interconnected systems, Asian Journal of Control, 13, 1, 94-106 (2011) · Zbl 1248.93104
[27] Chen, W.; Li, J. M.; Li, J., Practical adaptive iterative learning control framework based on robust adaptive approach, Asian Journal of Control, 13, 1, 85-93 (2011) · Zbl 1248.93068
[28] Ge, S. S.; Hong, F.; Tee, T. H., Robust adaptive control of nonlinear systems with unknown time delays, Automatica, 41, 12, 1181-1190 (2005) · Zbl 1078.93046
[29] Hua, C. C.; Feng, G.; Guan, X. P., Robust controller design of a class of nonlinear time delay systems via backstepping method, Automatica, 44, 2, 567-573 (2008) · Zbl 1283.93099
[30] Chen, W. S.; Jiao, L. C.; Li, J.; Li, R. H., Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays, IEEE Transactions on Systems, Man and Cybernetics B: Cybernetics, 40, 3, 1-12 (2009)
[31] Liu, Z.-F.; Cai, C.-X.; Zou, Y., Switching signal design for exponential stability of uncertain discrete-time switched time-delay systems, Journal of Applied Mathematics, 2013 (2013) · Zbl 1397.93105
[32] Zhou, B.; Gao, H. J.; Lin, Z. L.; Duan, G.-R., Stabilization of linear systems with distributed input delay and input saturation, Automatica, 48, 5, 712-724 (2012) · Zbl 1348.93224
[33] Zhou, B.; Lin, Z. L.; Duan, G.-R., Truncated predictor feedback for linear systems with long time-varying input delays, Automatica, 48, 10, 2387-2399 (2012) · Zbl 1271.93123
[34] Zhou, B.; Li, Z.-Y.; Lin, Z. L., Observer based output feedback control of linear systems with input and output delays, Automatica, 49, 7, 2039-2052 (2013) · Zbl 1364.93309
[35] Zhou, B., Truncated Predictor Feedback for Time-Delay Systems (2014), Berlin, Germany: Springer, Berlin, Germany
[36] Chen, Y.; Gong, Z.; Wen, C., Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays, Automatica, 34, 3, 345-353 (1998) · Zbl 0912.93031
[37] Prak, K. H.; Bien, Z.; Hwang, D. H., Design of an iterative learning controller for a class of linear dynamic systems with time delay, IEE Proceedings—Control Theory and Applications, 145, 6, 507-512 (1998)
[38] Sun, M. X.; Wang, D. W., Initial condition issues on iterative learning control for non-linear systems with time delay, International Journal of Systems Science, 32, 11, 1365-1375 (2001) · Zbl 1017.93042
[39] Chen, W. S., Adaptive learning control of linear systems with completely unknown time delays, International Journal of Automation and Computing, 6, 2, 177-185 (2009)
[40] Chen, W. S.; Zhang, L., Adaptive iterative learning control for nonlinearly parameterized systems with unknown time-varying delays, International Journal of Control, Automation and Systems, 8, 2, 177-186 (2010)
[41] Chen, W. S.; Wang, Y. L.; Li, J. M., Adaptive learning control for nonlinearly parameterized systems with periodically time-varying delays, Acta Automatica Sinica, 34, 12, 1556-1560 (2008)
[42] Tao, G.; Kokotović, P. V., Adaptive control of plants with unknown dead-zones, IEEE Transactions on Automatic Control, 39, 1, 59-68 (1994) · Zbl 0796.93070
[43] Wang, X. S.; Hong, H.; Su, C. Y., Model reference adaptive control of continuous-time systems with an unknown input dead-zone, IEE Proceedings—Control Theory and Applications, 150, 3, 261-266 (2003)
[44] Tang, X. D.; Tao, G.; Suresh, M. J., Adaptive actuator failure compensation for parametric strict feedback systems and an aircraft application, Automatica, 39, 11, 1975-1982 (2003) · Zbl 1048.93043
[45] Wang, X.-S.; Su, C.-Y.; Hong, H., Robust adaptive control of a class of nonlinear systems with unknown dead-zone, Automatica, 40, 3, 407-413 (2004) · Zbl 1036.93036
[46] Zhang, T. P.; Ge, S. S., Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs, Automatica, 43, 6, 1021-1033 (2007) · Zbl 1282.93152
[47] Zhang, T. P.; Ge, S. S., Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form, Automatica, 44, 7, 1895-1903 (2008) · Zbl 1149.93322
[48] Xu, J.-X.; Xu, J.; Lee, T. H., Iterative learning control for systems with input deadzone, IEEE Transactions on Automatic Control, 50, 9, 1455-1459 (2005) · Zbl 1365.93560
[49] Ge, S. S.; Tee, K. P., Approximation-based control of nonlinear MIMO time-delay systems, Automatica, 43, 1, 31-43 (2007) · Zbl 1137.93042
[50] Ioannou, P. A.; Sun, J., Robust Adaptive Control (1995), Englewood Cliffs, NJ, USA: Prentice-Hall, Englewood Cliffs, NJ, USA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.