Yao, Jin-jiang; Jiang, Zhao-lin The determinants, inverses, norm, and spread of skew circulant type matrices involving any continuous Lucas numbers. (English) Zbl 1437.15052 J. Appl. Math. 2014, Article ID 239693, 10 p. (2014). Summary: We consider the skew circulant and skew left circulant matrices with any continuous Lucas numbers. Firstly, we discuss the invertibility of the skew circulant matrices and present the determinant and the inverse matrices by constructing the transformation matrices. Furthermore, the invertibility of the skew left circulant matrices is also discussed. We obtain the determinants and the inverse matrices of the skew left circulant matrices by utilizing the relationship between skew left circulant matrices and skew circulant matrix, respectively. Finally, the four kinds of norms and bounds for the spread of these matrices are given, respectively. Cited in 3 Documents MSC: 15B57 Hermitian, skew-Hermitian, and related matrices 15A15 Determinants, permanents, traces, other special matrix functions 15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Daher, A.; Baghious, E. H.; Burel, G., Fast algorithm for optimal design of block digital filters based on circulant matrices, IEEE Signal Processing Letters, 15, 637-640 (2008) · doi:10.1109/LSP.2008.2003988 [2] Liu, V. C.; Vaidyanathan, P. P., Circulant and skew-circulant matrices as new normal-form realization of IIR digital filters, IEEE Transactions on Circuits and Systems, 35, 6, 625-635 (1988) · doi:10.1109/31.1800 [3] Fu, D. Q.; Jiang, Z. L.; Cui, Y. F.; Jhang, S. T., A new fastalgorithm for optimal design of block digital filters by skew-cyclic convolution, IET Signal Processing, 6 (2014) · doi:10.1049/iet-spr.2013.0384 [4] Wittsack, H.-J.; Wohlschläger, A. M.; Ritzl, E. K.; Kleiser, R.; Cohnen, M.; Seitz, R. J.; Mödder, U., CT-perfusion imaging of the human brain: advanced deconvolution analysis using circulant singular value decomposition, Computerized Medical Imaging and Graphics, 32, 1, 67-77 (2008) · doi:10.1016/j.compmedimag.2007.09.004 [5] Henriques, J. F.; Caseiro, R.; Martins, P.; Batista, J., Exploiting the circulant structure of tracking-by-detection with kernels, Computer Vision—ECCV 2012. Computer Vision—ECCV 2012, Lecture Notes in Computer Science, 7575, 702-715 (2012), Berlin, Germany: Springer, Berlin, Germany · doi:10.1007/978-3-642-33765-9_50 [6] Huang, X.; Ye, G.; Wong, K.-W., Chaotic image encryption algorithm based on circulant operation, Abstract and Applied Analysis, 2013 (2013) · Zbl 1381.94019 · doi:10.1155/2013/384067 [7] Jing, Y.; Jafarkhani, H., Distributed differential space-time coding for wireless relay networks, IEEE Transactions on Communications, 56, 7, 1092-1100 (2008) · doi:10.1109/TCOMM.2008.060388 [8] Narasimha, M. J., Linear convolution using skew-cyclic convolutions, IEEE Signal Processing Letters, 14, 3, 173-176 (2007) · doi:10.1109/LSP.2006.884034 [9] Gulliver, T. A.; Harada, M., New nonbinary self-dual codes, IEEE Transactions on Information Theory, 54, 1, 415-417 (2008) · Zbl 1308.94103 · doi:10.1109/TIT.2007.911265 [10] Davis, P. J., Circulant Matrices (1979), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0418.15017 [11] Jiang, Z. L.; Zhou, Z. X., Circulant Matrices (1999), Chengdu, China: Chengdu Technology University Publishing, Chengdu, China [12] Bertaccini, D.; Ng, M. K., Skew-circulant preconditioners for systems of LMF-based ODE codes, Numerical Analysis and Its Applications. Numerical Analysis and Its Applications, Lecture Notes in Computer Science, 1988, 93-101 (2001), Berlin, Germany: Springer, Berlin, Germany · Zbl 0979.65064 · doi:10.1007/3-540-45262-1_12 [13] Chan, R. H.; Jin, X.-Q., Circulant and skew-circulant preconditioners for skew-Hermitian type Toeplitz systems, BIT Numerical Mathematics, 31, 4, 632-646 (1991) · Zbl 0743.65026 · doi:10.1007/BF01933178 [14] Chan, R. H.; Ng, K.-P., Toeplitz preconditioners for Hermitian Toeplitz systems, Linear Algebra and Its Applications, 190, 181-208 (1993) · Zbl 0783.65042 · doi:10.1016/0024-3795(93)90226-E [15] Huckle, T., Circulant and skew circulant matrices for solving Toeplitz matrix problems, SIAM Journal on Matrix Analysis and Applications, 13, 3, 767-777 (1992) · Zbl 0756.65047 · doi:10.1137/0613048 [16] Lyness, J. N.; Sørevik, T., Four-dimensional lattice rules generated by skew-circulant matrices, Mathematics of Computation, 73, 245, 279-295 (2004) · Zbl 1035.65026 · doi:10.1090/S0025-5718-03-01534-5 [17] Karner, H.; Schneid, J.; Ueberhuber, C. W., Spectral decomposition of real circulant matrices, Linear Algebra and Its Applications, 367, 301-311 (2003) · Zbl 1021.15007 · doi:10.1016/S0024-3795(02)00664-X [18] Li, J.; Jiang, Z. L.; Shen, N.; Zhou, J. W., On optimal backward perturbation analysis for the linear system with skew circulant coefficient matrix, Computational and Mathematical Methods in Medicine, 2013 (2013) · Zbl 1307.65041 · doi:10.1155/2013/707381 [19] Jaiswal, D. V., On determinants involving generalized Fibonacci numbers, The Fibonacci Quarterly, 7, 319-330 (1969) · Zbl 0191.04501 [20] Lind, D. A., A Fibonacci circulant, The Fibonacci Quarterly, 8, 5, 449-455 (1970) · Zbl 0215.06802 [21] Dazheng, L., Fibonacci-Lucas quasi-cyclic matrices, The Fibonacci Quarterly, 40, 3, 280-286 (2002) · Zbl 1081.11011 [22] Shen, S.-Q.; Cen, J.-M.; Hao, Y., On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers, Applied Mathematics and Computation, 217, 23, 9790-9797 (2011) · Zbl 1222.15010 · doi:10.1016/j.amc.2011.04.072 [23] Gao, Y.; Jiang, Z. L.; Gong, Y. P., On the determinants and inverses of skew circulant and skew left circulant matrices with Fibonacci and Lucas numbers, WSEAS Transactions on Mathematics, 12, 4, 472-481 (2013) [24] Jiang, X. Y.; Gao, Y.; Jiang, Z. L., Determinantsand inverses of skew and skew left circulant matrices involving the \(k\)-Fibonacci numbers in communications-I, Far East Journal of Mathematical Sciences, 76, 1, 123-137 (2013) · Zbl 1276.15005 [25] Jiang, X. Y.; Gao, Y.; Jiang, Z. L., Determinants and inverses of skew and skew left circulant matrices involving the \(k\)-Lucas numbers in communications-II, Far East Journal of Mathematical Sciences, 78, 1, 1-17 (2013) · Zbl 1390.15021 [26] Solak, S., On the norms of circulant matrices with the Fibonacci and Lucas numbers, Applied Mathematics and Computation, 160, 1, 125-132 (2005) · Zbl 1066.15029 · doi:10.1016/j.amc.2003.08.126 [27] İpek, A., On the spectral norms of circulant matrices with classical Fibonacci and Lucas numbers entries, Applied Mathematics and Computation, 217, 12, 6011-6012 (2011) · Zbl 1211.15028 · doi:10.1016/j.amc.2010.12.094 [28] Shen, S.; Cen, J., On the bounds for the norms of \(r\)-circulant matrices with the Fibonacci and Lucas numbers, Applied Mathematics and Computation, 216, 10, 2891-2897 (2010) · Zbl 1211.15029 · doi:10.1016/j.amc.2010.03.140 [29] Akbulak, M.; Bozkurt, D., On the norms of Toeplitz matrices involving Fibonacci and Lucas numbers, Hacettepe Journal of Mathematics and Statistics, 37, 2, 89-95 (2008) · Zbl 1204.15031 [30] Bose, A.; Hazra, R. S.; Saha, K., Spectral norm of circulant-type matrices, Journal of Theoretical Probability, 24, 2, 479-516 (2011) · Zbl 1241.60006 · doi:10.1007/s10959-009-0257-z [31] Mirsky, L., The spread of a matrix, Mathematika, 3, 127-130 (1956) · Zbl 0073.00903 [32] Sharma, R.; Kumar, R., Remark on upper bounds for the spread of a matrix, Linear Algebra and Its Applications, 438, 11, 4359-4362 (2013) · Zbl 1281.15018 · doi:10.1016/j.laa.2013.01.018 [33] Mirsky, L., Inequalities for normal and Hermitian matrices, Duke Mathematical Journal, 24, 4, 591-599 (1957) · Zbl 0081.25101 · doi:10.1215/S0012-7094-57-02467-5 [34] Barnes, E. R.; Hoffman, A. J., Bounds for the spectrum of normal matrices, Linear Algebra and Its Applications, 201, 79-90 (1994) · Zbl 0803.15016 · doi:10.1016/0024-3795(94)90106-6 [35] Jiang, E.; Zhan, X., Lower bounds for the spread of a Hermitian matrix, Linear Algebra and Its Applications, 256, 153-163 (1997) · Zbl 0886.15017 · doi:10.1016/S0024-3795(95)00785-7 [36] Bhatia, R.; Sharma, R., Some inequalities for positive linear maps, Linear Algebra and Its Applications, 436, 6, 1562-1571 (2012) · Zbl 1252.15024 · doi:10.1016/j.laa.2010.09.038 [37] Wu, J.; Zhang, P.; Liao, W., Upper bounds for the spread of a matrix, Linear Algebra and Its Applications, 437, 11, 2813-2822 (2012) · Zbl 1258.15004 · doi:10.1016/j.laa.2012.07.007 [38] Johnson, C. R.; Kumar, R.; Wolkowicz, H., Lower bounds for the spread of a matrix, Linear Algebra and Its Applications, 71, 161-173 (1985) · Zbl 0578.15013 · doi:10.1016/0024-3795(85)90244-7 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.