×

Eliminating impulse for descriptor system by derivative output feedback. (English) Zbl 1437.93036

Summary: The problem of impulse elimination for descriptor system by derivative output feedback is investigated in this paper. Based on a novelly restricted system equivalence between matrix pencils, the range of dynamical order of the resultant closed loop descriptor system is given. Then, for the different dynamical order, sufficient conditions for the existence of derivative output feedback to ensure the resultant closed loop system to be impulse free are derived, and the corresponding derivative output feedback controllers are provided. Finally, simulation examples are given to show the consistence with the theoretical results obtained in this paper.

MSC:

93B52 Feedback control
93B55 Pole and zero placement problems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Zhang, Q. L.; Liu, C.; Zhang, X., Complexity, Analysis and Control of Singular Biological Systems. Complexity, Analysis and Control of Singular Biological Systems, Lecture Notes in Control and Information Sciences, 421 (2012), Berlin, Germany: Springer, Berlin, Germany · Zbl 1402.92009
[2] Yang, D. M.; Zhang, Q. L.; Yao, B., Descriptor Systems (2003), Beijing, China: Science Press, Beijing, China
[3] Wu, Z.; Su, H.; Chu, J., Delay-dependent robust exponential stability of uncertain singular systems with time delays, International Journal of Innovative Computing, Information and Control, 6, 5, 2275-2283 (2010)
[4] Feng, Y.-F.; Zhu, X.-L.; Zhang, Q.-L., An improved ℋ∞ stabilization condition for singular time-delay systems, International Journal of Innovative Computing, Information and Control, 6, 5, 2025-2034 (2010)
[5] Teng, Y. F.; Zhang, Q. L.; Zhang, G. S., Study of Controllability of descriptor systems, Journal of Northeastern University, 1-6 (2003)
[6] Zhang, Q. L.; Lam, J., Robust impulse-eliminating control for descriptor systems, Dynamics of Continuous, Discrete & Impulsive Systems B, 9, 1, 13-27 (2002) · Zbl 1007.93005
[7] Assunção, E.; Teixeira, M. C. M.; Faria, F. A.; Cardim, R., Robust state-derivative feedback LMI-based designs for multivariable linear systems, International Journal of Control, 80, 8, 1260-1270 (2007) · Zbl 1133.93022
[8] Abdelaziz, T. H. S.; Valášek, M., Pole-placement for SISO linear systems by statederivative feedback, IEE Proceedings of Control Theory and Applications, 151, 4, 377-385 (2004)
[9] Cardim, R.; Teixeira, M. C. M.; Assuncão, E.; Faria, F. A., Control designs for linear systems using state-derivative feedback, Systems, Structure and Control, 1-28 (2008), Vienna, Austria: In-Tech, Vienna, Austria
[10] Abdelaziz, T. H. S.; Valášek, M., Direct algorithm for pole placement by state-derivative feedback for multi-input linear systems—nonsingular case, Kybernetika, 41, 5, 637-660 (2005) · Zbl 1249.93082
[11] Duan, G.-R.; Zhang, X., Regularizability of linear descriptor systems via output plus partial state derivative feedback, Asian Journal of Control, 5, 3, 334-340 (2003)
[12] Kuo, Y.-C.; Lin, W.-W.; Xu, S.-F., Regularization of linear discrete-time periodic descriptor systems by derivative and proportional state feedback, SIAM Journal on Matrix Analysis and Applications, 25, 4, 1046-1073 (2004) · Zbl 1069.93012
[13] Chu, D. L.; Ho, D. W. C., Necessary and sufficient conditions for the output feedback regularization of descriptor systems, IEEE Transactions on Automatic Control, 44, 2, 405-412 (1999) · Zbl 1056.93605
[14] Faria, F. A.; Assunção, E.; Teixeira, M. C. M.; Cardim, R.; da Silva, N. A. P., Robust state-derivative pole placement LMI-based designs for linear systems, International Journal of Control, 82, 1, 1-12 (2009) · Zbl 1154.93366
[15] Fahmy, M. M.; Tantawy, H. S., Dynamical order assignment for linear descriptor systems, International Journal of Control, 52, 1, 175-190 (1990) · Zbl 0702.93034
[16] Gu, D. W.; Petkov, H. P.; Konstantinov, M. M., Robust Control Design with Matlab (2005), Berlin, Germany: Springer, Berlin, Germany · Zbl 1086.93001
[17] Ren, J. C.; Zhang, Q. L., Robust normalization and guaranteed cost control for a class of uncertain descriptor systems, Automatica, 48, 8, 1693-1697 (2012) · Zbl 1267.93060
[18] Faria, F. A.; Assunção, E.; Teixeira, M. C. M.; Cardim, R., Robust state-derivative feedback LMI-based designs for linear descriptor systems, Mathematical Problems in Engineering, 2010 (2010) · Zbl 1191.93071
[19] Teng, Y.-F.; Zhang, Q.-L., Stabilization for the closed-loop descriptor system via derivative feedback, Control Theory & Applications, 25, 1, 21-26 (2008) · Zbl 1199.93233
[20] Bunse-Gerstner, A.; Mehrmann, V.; Nichols, N. K., Regularization of descriptor systems by derivative and proportional state feedback, SIAM Journal on Matrix Analysis and Applications, 13, 1, 46-67 (1992) · Zbl 0743.93026
[21] Bunse-Gerstner, A.; Mehrmann, V.; Nichols, N. K.; van Dooren, P.; Wyman, B., Output feedback in descriptorsystems, Linear Algebra for Control Theory, 43-54 (1993), New York, NY, USA: Springer, New York, NY, USA
[22] Bunse-Gerstner, A.; Mehrmann, V.; Nichols, N. K., Regularization of descriptor systems by output feedback, IEEE Transactions on Automatic Control, 39, 8, 1742-1748 (1994) · Zbl 0800.93544
[23] Chu, D. L.; Chan, H. C.; Ho, D. W. C., Regularization of singular systems by derivative and proportional output feedback, SIAM Journal on Matrix Analysis and Applications, 19, 1, 21-38 (1998) · Zbl 0912.93027
[24] Chu, D.; Mehrmann, V.; Nichols, N. K., Minimum norm regularization of descriptor systems by mixed output feedback, Linear Algebra and Its Applications, 296, 1-3, 39-77 (1999) · Zbl 0959.93032
[25] Zhang, Q. L., Decentralized Control and Robust Control for Large-Scale Descriptor Systems (1997), Xi’an, China: Northwestern Polytechnic University Press, Xi’an, China
[26] Marz, R.; Riaza, R., Linear differential-algebraic equations with properly statedleading term: B-critical points, Preprint 07-9 (2007), Berlin, Germany: Institute of Mathematics, Humboldt University, Berlin, Germany
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.