×

Newton’s method for the matrix nonsingular square root. (English) Zbl 1437.65035

Summary: Two new algorithms are proposed to compute the nonsingular square root of a matrix \(A\). Convergence theorems and stability analysis for these new algorithms are given. Numerical results show that these new algorithms are feasible and effective.

MSC:

65F60 Numerical computation of matrix exponential and similar matrix functions

References:

[1] Schmitt, B. A., On algebraic approximation for the matrix exponential in singularly perturbed bounded value problems, SIAM Journal on Numerical Analysis, 57, 51-66 (2010)
[2] Cheng, S. H.; Higham, N. J.; Kenney, C. S.; Laub, A. J., Approximating the logarithm of a matrix to specified accuracy, SIAM Journal on Matrix Analysis and Applications, 22, 4, 1112-1125 (2001) · Zbl 0989.65057 · doi:10.1137/S0895479899364015
[3] Dieci, L.; Morini, B.; Papini, A., Computational techniques for real logarithms of matrices, SIAM Journal on Matrix Analysis and Applications, 17, 3, 570-593 (1996) · Zbl 0870.65036 · doi:10.1137/S0895479894273614
[4] Cross, G. W.; Lancaster, P., Square roots of complex matrices, Linear and Multilinear Algebra, 1, 289-293 (1974) · Zbl 0283.15008
[5] Hoskins, W. D.; Walton, D. J., A faster method of computing square roots of a matrix, IEEE Transactions on Automatic Control, 23, 3, 494-495 (1978) · Zbl 0378.65028
[6] Johnson, C. R.; Okubo, K., Uniqueness of matrix square roots under a numerical range condition, Linear Algebra and Its Applications, 341, 1-3, 195-199 (2002) · Zbl 0992.15009 · doi:10.1016/S0024-3795(01)00358-5
[7] Björck, Å.; Hammarling, S., A Schur method for the square root of a matrix, Linear Algebra and Its Applications, 52-53, 127-140 (1983) · Zbl 0515.65037 · doi:10.1016/0024-3795(83)80010-X
[8] Chen, S. G.; Hsieh, P. Y., Fast computation of the nth root, Computers & Mathematics with Applications, 17, 10, 1423-1427 (1989) · Zbl 0687.65052 · doi:10.1016/0898-1221(89)90024-2
[9] Denman, E. D.; Beavers, A. N., The matrix sign function and computations in systems, Applied Mathematics and Computation, 2, 1, 63-94 (1976) · Zbl 0398.65023
[10] Franca, L. P., An algorithm to compute the square root of a \(3 \times 3\) positive definite matrix, Computers & Mathematics with Applications, 18, 5, 459-466 (1989) · Zbl 0686.65019 · doi:10.1016/0898-1221(89)90240-X
[11] Higham, N. J., Newton’s method for the matrix square root, Mathematics of Computation, 46, 174, 537-549 (1986) · Zbl 0614.65045 · doi:10.2307/2007992
[12] Hasan, M. A., A power method for computing square roots of complex matrices, Journal of Mathematical Analysis and Applications, 213, 2, 393-405 (1997) · Zbl 0893.65028 · doi:10.1006/jmaa.1997.5517
[13] Higham, N. J., Stable iterations for the matrix square root, Numerical Algorithms, 15, 2, 227-242 (1997) · Zbl 0884.65035 · doi:10.1023/A:1019150005407
[14] Liu, Z.; Zhang, Y.; Ralha, R., Computing the square roots of matrices with central symmetry, Applied Mathematics and Computation, 186, 1, 715-726 (2007) · Zbl 1121.65045 · doi:10.1016/j.amc.2006.08.032
[15] Zhang, Y. N.; Yang, Y. W.; Cai, B. H.; Guo, D. S., Zhang neural network and its application to Newton iteration for matrix square root estimation, Neural Computing and Applications, 21, 3, 453-460 (2012) · doi:10.1007/s00521-010-0445-x
[16] Liu, Z.; Chen, H.; Cao, H., The computation of the principal square roots of centrosymmetric H-matrices, Applied Mathematics and Computation, 175, 1, 319-329 (2006) · Zbl 1093.65044 · doi:10.1016/j.amc.2005.07.029
[17] Ortega, J. M.; Rheinboldt, W. C., Iterative Solution of Nonlinear Equations in Several Variables (2008), Philadephia, Pa, USA: SIAM, Philadephia, Pa, USA · Zbl 0241.65046
[18] Laasonen, P., On the iterative solution of the matrix equation \(A X^2 - I = 0\), Mathematical Tables and Other Aids to Computation, 12, 109-116 (1958) · Zbl 0083.11704 · doi:10.2307/2002785
[19] Ortega, J. M., Numerical Analysis (1972), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0248.65001
[20] Meini, B., The matrix square root from a new functional perspective: theoretical results and computational issues, SIAM Journal on Matrix Analysis and Applications, 26, 2, 362-376 (2004) · Zbl 1087.15019 · doi:10.1137/S0895479803426656
[21] Samanskii, V., On a modification of the Newton’s method, Ukrainian Mathematical Journal, 19, 133-138 (1967) · Zbl 0176.13802
[22] Gardiner, J. D.; Laub, A. J.; Amato, J. J.; Moler, C. B., Solution of the Sylvester matrix equation \(A X B^T + C X D^T = E\), Association for Computing Machinery: Transactions on Mathematical Software, 18, 2, 223-231 (1992) · Zbl 0893.65026 · doi:10.1145/146847.146929
[23] Krasnoselskii, M. A.; Vainikko, G. M.; Zabreiko, P. P.; Rutitskii, Y. B.; Stetsenko, V. Y., Approximate Solution of Operator Equations (1972), Groningen, The Netherlands: Wolters-Noordhoff Publishing, Groningen, The Netherlands · Zbl 0231.41024
[24] Guo, D. J., Nonlinear Functional Analysis (2009), Shandong, China: Shandong Science Press, Shandong, China
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.