×

A comparison of selected modifications of the particle swarm optimization algorithm. (English) Zbl 1437.90166

Summary: We compare 27 modifications of the original particle swarm optimization (PSO) algorithm. The analysis evaluated nine basic PSO types, which differ according to the swarm evolution as controlled by various inertia weights and constriction factor. Each of the basic PSO modifications was analyzed using three different distributed strategies. In the first strategy, the entire swarm population is considered as one unit (OC-PSO), the second strategy periodically partitions the population into equally large complexes according to the particle’s functional value (SCE-PSO), and the final strategy periodically splits the swarm population into complexes using random permutation (SCERand-PSO). All variants are tested using 11 benchmark functions that were prepared for the special session on real-parameter optimization of CEC 2005. It was found that the best modification of the PSO algorithm is a variant with adaptive inertia weight. The best distribution strategy is SCE-PSO, which gives better results than do OC-PSO and SCERand-PSO for seven functions. The sphere function showed no significant difference between SCE-PSO and SCERand-PSO. It follows that a shuffling mechanism improves the optimization process.

MSC:

90C59 Approximation methods and heuristics in mathematical programming
68T05 Learning and adaptive systems in artificial intelligence

Software:

LHS; SIGOA; CEC 05
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Kennedy, J.; Eberhart, R., Particle swarm optimization, Proceedings of the IEEE International Conference on Neural Networks
[2] Weise, T., Global Optimization Algorithms—Theory and Application (2009)
[3] Deng, W.; Chen, R.; He, B.; Liu, Y.; Yin, L.; Guo, J., A novel two-stage hybrid swarm intelligence optimization algorithm and application, Soft Computing, 16, 10, 1707-1722 (2012)
[4] Gershenfeld, N., The Nature of Mathematical Modeling (1999), New York, NY, USA: Cambridge University Press, New York, NY, USA · Zbl 0905.00015
[5] Mendes, R., Population topologies and their influence in particle swarm performance [Ph.D. thesis] (2004), University of Minho
[6] Michalewicz, Z.; Fogel, D., How to Solve It: Modern Heuristics (2004), New York, NY, USA: Springer, New York, NY, USA · Zbl 1058.68105
[7] Baltar, A. M.; Fontane, D. G., Use of multiobjective particle swarm optimization in water resources management, Journal of Water Resources Planning and Management, 134, 3, 257-265 (2008)
[8] Gill, M. K.; Kaheil, Y. H.; Khalil, A.; McKee, M.; Bastidas, L., Multiobjective particle swarm optimization for parameter estimation in hydrology, Water Resources Research, 42, 7 (2006)
[9] Munoz, D. M.; Llanos, C. H.; Coelho, L. D. S.; Ayala-Rincon, M., Opposition-based shuffled PSO with passive congregation applied to FM matching synthesis, Proceedings of the IEEE Congress of Evolutionary Computation (CEC ’11), IEEE
[10] Shi, Y.; Eberhart, R., A modified particle swarm optimizer, Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC ’98), IEEE Computer Society
[11] Shi, Y.; Eberhart, R., Empirical study of particle swarm optimization, Proceedings of the Congress on Evolutionary Computation
[12] Bui, L. T.; Soliman, O.; Abbass, H. A., A modified strategy for the constriction factor in particle swarm optimization, Progress in Artificial Life: Proceedings of the 3rd Australian Conference; ACAL 2007 Gold Coast, Australia, December 4-6, 2007. Progress in Artificial Life: Proceedings of the 3rd Australian Conference; ACAL 2007 Gold Coast, Australia, December 4-6, 2007, Lecture Notes in Computer Science, 4828, 333-344 (2007), Berlin, Germany: Springer, Berlin, Germany
[13] Nickabadi, A.; Ebadzadeh, M. M.; Safabakhsh, R., A novel particle swarm optimization algorithm with adaptive inertia weight, Applied Soft Computing Journal, 11, 4, 3658-3670 (2011)
[14] Duan, Q. Y.; Gupta, V. K.; Sorooshian, S., Shuffled complex evolution approach for effective and efficient global minimization, Journal of Optimization Theory and Applications, 76, 3, 501-521 (1993) · Zbl 0792.90065
[15] Vrugt, J. A.; Robinson, B. A.; Hyman, J. M., Self-adaptive multimethod search for global optimization in real-parameter spaces, IEEE Transactions on Evolutionary Computation, 13, 2, 243-259 (2009)
[16] Pant, M.; Thangaraj, R.; Abraham, A.; Abraham, A.; Hassanien, A.-E.; Siarry, P.; Engelbrecht, A., Particle swarm optimization: performance tuning and empirical analysis, Foundations of Computational Intelligence. Foundations of Computational Intelligence, Studies in Computational Intelligence, 3, 101-128 (2009), Berlin, Germany: Springer, Berlin, Germany
[17] Hassan, R.; Cohanim, B.; Weck, O. D.; Venter, G., A comparison of particle swarm optimization and the genetic algorithm, Proceedings of the 1st AIAA Multidisciplinary Design Optimization Specialist Conference
[18] Bergh, F. V. D., An analysis of particle swarm optimizers [Ph.D. thesis] (2001), University of Pretoria
[19] Eberhart, R. C.; Shi, Y., Comparing inertia weights and constriction factors in particle swarm optimization, Proceedings of the Congress on Evolutionary Computation (CEC ’00), IEEE
[20] Eberhart, R.; Simpson, P.; Dobbins, R., Computational Intelligence PC Tools (1996), San Diego, Calif, USA: Academic Press Professional, San Diego, Calif, USA
[21] Corne, D.; Dorigo, M.; Glover, F.; Dasgupta, D.; Moscato, P.; Poli, R.; Price, K. V., New Ideas in Optimization (1999), Maidenhead, UK: McGraw-Hill, Maidenhead, UK
[22] Eberhart, R. C.; Shi, Y., Particle swarm optimization: developments, applications and resources, Proceedings of the Congress on Evolutionary Computation
[23] Bansal, J. C.; Singh, P. K.; Saraswat, M.; Verma, A.; Jadon, S. S.; Abraham, A., Inertia weight strategies in particle swarm optimization, Proceedings of the 3rd World Congress on Nature and Biologically Inspired Computing (NaBIC ’11)
[24] Gimmler, J.; Stützle, T.; Exner, T. E., Hybrid particle swarm optimization: an examination of the influence of iterative improvement algorithms on performance, Ant Colony Optimization and Swarm Intelligence: Proceedings of the 5th International Workshop, ANTS 2006, Brussels, Belgium, September 4-7, 2006. Ant Colony Optimization and Swarm Intelligence: Proceedings of the 5th International Workshop, ANTS 2006, Brussels, Belgium, September 4-7, 2006, Lecture Notes in Computer Science, 4150, 436-443 (2006), Berlin, Germany: Springer, Berlin, Germany
[25] Eberhart, R. C.; Shi, Y., Tracking and optimizing dynamic systems with particle swarms, Proceedings of the Congress on Evolutionary Computation
[26] Xin, J.; Chen, G.; Hai, Y., A particle swarm optimizer with multi-stage linearly-decreasing inertia weight, Proceedings of the International Joint Conference on Computational Sciences and Optimization (CSO ’09), IEEE Computer Society
[27] Yang, C.-H.; Hsiao, C.-J.; Chuang, L.-Y., Linearly decreasing weight particle swarm optimization with accelerated strategy for data clustering, IAENG International Journal of Computer Science, 37, 3, 1 (2010)
[28] Feng, Y.; Teng, G.-F.; Wang, A.-X.; Yao, Y.-M., Chaotic inertia weight in particle swarm optimization, Proceedings of the 2nd International Conference on Innovative Computing, Information and Control (ICICIC ’07)
[29] Clerc, M., The swarm and the queen: towards a deterministic and adaptive particle swarm optimization, Proceedings of the Congress on Evolutionary Computation
[30] Angeline, P. J., Using selection to improve particle swarm optimization, Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC ’98)
[31] Parsopoulos, K. E.; Plagianakos, V. P.; Magoulas, G. D.; Vrahatis, M. N., Improving particle swarm optimizer by function stretching, Advances in Convex Analysis and Global Optimization, 445-457 (2001), New York, NY, USA: Springer, New York, NY, USA · Zbl 1015.90064
[32] Parsopoulos, K. E.; Vrahatis, M. N., Initializing the particle swarm optimizer using the nonlinear simplex method, Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation, 216-221 (2002), WSEAS Press
[33] Yan, J.; Tiesong, H.; Chongchao, H.; Xianing, W.; Faling, G., A shuffled complex evolution of particle swarm optimization algorithm, Adaptive and Natural Computing Algorithms: Proceedings of the 8th International Conference, ICANNGA 2007, Warsaw, Poland, April 11-14, 2007, Part I. Adaptive and Natural Computing Algorithms: Proceedings of the 8th International Conference, ICANNGA 2007, Warsaw, Poland, April 11-14, 2007, Part I, Lecture Notes in Computer Science, 4431, 341-349 (2007), Berlin, Germany: Springer, Berlin, Germany
[34] Mariani, V. C.; Justi Luvizotto, L. G.; Guerra, F. A.; Coelho, L. D. S., A hybrid shuffled complex evolution approach based on differential evolution for unconstrained optimization, Applied Mathematics and Computation, 217, 12, 5822-5829 (2011) · Zbl 1209.65061
[35] Weber, M.; Neri, F.; Tirronen, V., Shuffle or update parallel differential evolution for large-scale optimization, Soft Computing, 15, 11, 2089-2107 (2011)
[36] Durstenfeld, R., Algorithm 235: random permutation, Communications of the ACM, 7, 7, 420 (1964)
[37] McKay, M. D.; Beckman, R. J.; Conover, W. J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21, 2, 239-245 (1979) · Zbl 0415.62011
[38] Wyss, G. D.; Jorgensen, K. H., A User’s Guide to LHS: Sandias Latin Hypercube Sampling Software (1998), Sandia National Laboratories
[39] Eberhart, R.; Shi, Y., Computational Intelligence: Concepts to Implementations (2007), Boston, Mass, USA: Morgan Kaufmann, Boston, Mass, USA · Zbl 1138.68482
[40] Suganthan, P. N.; Hansen, N.; Liang, J. J.; Deb, K.; Chen, Y. P.; Auger, A.; Tiwari, S., Problem definitions and evaluation criteria for the CEC, 2005 special session on real-parameter optimization (2005), Singapore: Nanyang Technological University, Singapore
[41] Cabrera, J. C. F.; Coello, C. A. C., Handling constraints in particle swarm optimization using a small population size, MICAI 2007: Advances in Artificial Intelligence: Proceedings of the 6th Mexican International Conference on Artificial Intelligence, Aguascalientes, Mexico, November 4-10, 2007. MICAI 2007: Advances in Artificial Intelligence: Proceedings of the 6th Mexican International Conference on Artificial Intelligence, Aguascalientes, Mexico, November 4-10, 2007, Lecture Notes in Computer Science, 4827, 41-51 (2007), Berlin, Germany: Springer, Berlin, Germany
[42] Parsopoulos, K.; Vrahatis, M. N., On the Computation of all global minimizers through particle swarm optimization, IEEE Transactions on Evolutionary Computation, 8, 3, 211-224 (2004)
[43] Dytham, C., Choosing and Using Statistics: A Biologist’s Guide (2011), Oxford, UK: Blackwell Science, Oxford, UK · Zbl 1236.92002
[44] García, S.; Molina, D.; Lozano, M.; Herrera, F., A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization, Journal of Heuristics, 15, 6, 617-644 (2009) · Zbl 1191.68828
[45] Hansen, N., Compilation of results on the 2005 CEC benchmark function set
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.