## On comparison theorems for splittings of different semimonotone matrices.(English)Zbl 1442.65046

Summary: Comparison theorems between the spectral radii of different matrices are useful tools for judging the efficiency of preconditioners. In this paper, some comparison theorems for the spectral radii of matrices arising from proper splittings of different semimonotone matrices are presented.

### MSC:

 65F10 Iterative numerical methods for linear systems 65F20 Numerical solutions to overdetermined systems, pseudoinverses
Full Text:

### References:

 [1] Mishra, D.; Sivakumar, K., Comparison theorems for a subclass of proper splittings of matrices, Applied Mathematics Letters, 25, 12, 2339-2343 (2012) · Zbl 1252.65069 · doi:10.1016/j.aml.2012.06.028 [2] Ben-Israel, A.; Greville, T., Generalized Inverses: Theory and Applications (2003), New York, NY, USA: Springer, New York, NY, USA · Zbl 1026.15004 [3] Wang, G.; Wei, Y.; Qiao, S., Generalized Inverses: Theory and Computations (2004), Beijing, China: Science Press, Beijing, China [4] Berman, A.; Plemmons, R. J., Cones and iterative methods for best least squares solutions of linear systems, SIAM Journal on Numerical Analysis, 11, 145-154 (1974) · Zbl 0244.65024 · doi:10.1137/0711015 [5] Varga, R. S., Matrix Iterative Analysis, 27 (2000), Berlin, Germany: Springer, Berlin, Germany · Zbl 1216.65042 · doi:10.1007/978-3-642-05156-2 [6] Berman, A.; Plemmons, R., Nonnegative Matrices in the Mathematical Sciences (1994), Philadelphia, Pa, USA: SIAM, Philadelphia, Pa, USA · Zbl 0815.15016 [7] Climent, J.-J.; Perea, C., Iterative methods for least-square problems based on proper splittings, Journal of Computational and Applied Mathematics, 158, 1, 43-48 (2003) · Zbl 1033.65021 · doi:10.1016/S0377-0427(03)00465-5 [8] Jena, L.; Mishra, D.; Pani, S., Convergence and comparison theorems for single and double decompositions of rectangular matrices, Calcolo, 51, 1, 141-149 (2014) · Zbl 1318.65017 · doi:10.1007/s10092-013-0079-3 [9] Climent, J.-J.; Devesa, A.; Perea, C.; Mastorakis, N., Convergence results for proper splittings, Recent Advances in Applied and Theoretical Mathematics, 39-44 (2000) · Zbl 1043.65061 [10] Miao, S.-X.; Zheng, B., A note on double splittings of different monotone matrices, Calcolo, 46, 4, 261-266 (2009) · Zbl 1185.65058 · doi:10.1007/s10092-009-0011-z [11] Elsner, L.; Frommer, A.; Nabben, R.; Szyld, D. B., Conditions for strict inequality in comparisons of spectral radii of splittings of different matrices, Linear Algebra and Its Applications, 363, 65-80 (2003) · Zbl 1018.65049 · doi:10.1016/S0024-3795(01)00535-3 [12] Li, C.-X.; Cui, Q.-F.; Wu, S.-L., Comparison theorems for single and double splittings of matrices, Journal of Applied Mathematics, 2013 (2013) · Zbl 1266.65053 · doi:10.1155/2013/827826 [13] Mishra, D., Nonnegative splittings for rectangular matrices, Computers & Mathematics with Applications, 67, 1, 136-144 (2014) · Zbl 1350.65025 · doi:10.1016/j.camwa.2013.10.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.