×

Hopf bifurcation analysis in a new chaotic system with chaos entanglement function. (English) Zbl 1463.37027

Summary: A new approach to generate chaotic phenomenon, called chaos entanglement, is introduced in this paper. The basic principle is to entangle two or multiple stable linear subsystems by entanglement functions to form an artificial chaotic system such that each of them evolves in a chaotic manner. The Hopf bifurcation of a new chaotic system with chaos entanglement function is studied. More precisely, we study the stability and bifurcations of equilibrium in the new chaotic system. Besides, we controlled the system to any fixed point to eliminate the chaotic vibration by means of sliding mode method. And the numerical simulations were presented to confirm the effectiveness of the controller.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37G35 Dynamical aspects of attractors and their bifurcations
34C28 Complex behavior and chaotic systems of ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Lorenz, E. N., Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20, 130-141 (1963) · Zbl 1417.37129
[2] Rossler, O. E., An equation for continuous chaos, Physics Letters A, 57, 5, 397-399 (1976) · Zbl 1371.37062
[3] Chen, G.; Ueta, T., Yet another chaotic attractor, International Journal of Bifurcation and Chaos, 9, 7, 1465-1466 (1999) · Zbl 0962.37013
[4] Lü, J.; Chen, G., A new chaotic attractor coined, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 12, 3, 659-662 (2002) · Zbl 1063.34510
[5] Liu, C.; Liu, T.; Liu, L.; Liu, K., A new chaotic attractor, Chaos, Solitons and Fractals, 22, 5, 1031-1038 (2004) · Zbl 1060.37027
[6] Celikovsky, S.; Chen, G., On the generalized Lorenz canonical form, Chaos, Solitons and Fractals, 26, 5, 1271-1276 (2005) · Zbl 1100.37016
[7] Yang, Q. G.; Chen, G. R.; Huang, K. F., Chaotic attractors of the conjugate Lorenz-type system, International Journal of Bifurcation and Chaos, 17, 11, 3929-3949 (2007) · Zbl 1149.37308
[8] van der Schrier, G.; Maas, L. R. M., The diffusionless Lorenz equations; Shil’nikov bifurcations and reduction to an explicit map, Physica D, 141, 1-2, 19-36 (2000) · Zbl 0956.37038
[9] Shaw, R., Strange attractors, chaotic behavior, and information flow, Zeitschrift für Naturforschung A, 36, 1, 80-112 (1981) · Zbl 0599.58033
[10] Yang, Q. G.; Chen, G. R., A chaotic system with one saddle and two stable node-foci, International Journal of Bifurcation and Chaos, 18, 5, 1393-1414 (2008) · Zbl 1147.34306
[11] Qi, G.; Chen, G.; Du, S.; Chen, Z.; Yuan, Z., Analysis of a new chaotic system, Physica A, 352, 2-4, 295-308 (2005)
[12] Yang, Q.; Chen, Y., Complex dynamics in the unified Lorenz-type system, International Journal of Bifurcation and Chaos, 24, 4 (2014) · Zbl 1296.34117
[13] Chen, D.; Yang, P.; Ma, X.; Sun, Z., Chaos of hydro-turbine governing system and its control, Proceedings of the Chinese Society of Electrical Engineering, 31, 14, 113-120 (2011)
[14] Chen, D.-Y.; Liu, Y.-X.; Ma, X.-Y.; Zhang, R.-F., No-chattering sliding mode control in a class of fractional-order chaotic systems, Chinese Physics B, 20, 12 (2011)
[15] Lee, J.-H.; Allaire, P. E.; Tao, G.; Zhang, X., Integral sliding-mode control of a magnetically suspended balance beam: analysis, simulation, and experiment, IEEE/ASME Transactions on Mechatronics, 6, 3, 338-346 (2001)
[16] Wang, J.; Lee, T.; Juang, Y., New methods to design an integral variable structure controller, IEEE Transactions on Automatic Control, 41, 1, 140-143 (1996) · Zbl 0842.93012
[17] Chen, D.; Shen, T.; Ma, X., Sliding mode control of chaotic vibrations of spinning disks with uncertain parameter under bounded disturbance, Acta Physica Sinica, 60, 5 (2011)
[18] Zhang, H.; Liu, X.; Shen, X.; Liu, J., Chaos entanglement: a new approach to generate chaos, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 23, 5 (2013) · Zbl 1270.34101
[19] Wolf, A.; Swift, J. B.; Swinney, H. L. a., Determining Lyapunov exponents from a time series, Physica D: Nonlinear Phenomena, 16, 3, 285-317 (1985) · Zbl 0585.58037
[20] Dias, F. S.; Mello, L. F.; Zhang, J.-G., Nonlinear analysis in a Lorenz-like system, Nonlinear Analysis: Real World Applications, 11, 5, 3491-3500 (2010) · Zbl 1208.34066
[21] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory. Elements of Applied Bifurcation Theory, Applied Mathematical Sciences (2004), New York, NY, USA: Springer, New York, NY, USA · Zbl 1082.37002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.