×

A least squares method for variance estimation in heteroscedastic nonparametric regression. (English) Zbl 1442.62090

Summary: Interest in variance estimation in nonparametric regression has grown greatly in the past several decades. Among the existing methods, the least squares estimator in [T. Tong and Y. Wang, Biometrika 92, No. 4, 821–830 (2005; Zbl 1151.62318)] is shown to have nice statistical properties and is also easy to implement. Nevertheless, their method only applies to regression models with homoscedastic errors. In this paper, we propose two least squares estimators for the error variance in heteroscedastic nonparametric regression: the intercept estimator and the slope estimator. Both estimators are shown to be consistent and their asymptotic properties are investigated. Finally, we demonstrate through simulation studies that the proposed estimators perform better than the existing competitor in various settings.

MSC:

62G08 Nonparametric regression and quantile regression
62G05 Nonparametric estimation
62G20 Asymptotic properties of nonparametric inference

Citations:

Zbl 1151.62318
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Carroll, R. J., The effects of variance function estimation on prediction and calibration: an example, Statistical Decision Theory and Related Topics, 2, 273-280 (1986)
[2] Carroll, R. J.; Ruppert, D., Transforming and Weighting in Regression (1988), London, UK: Chapman & Hall, London, UK
[3] Kay, J., On the choice of the regularisation parameter in image restoration, Pattern Recognition. Pattern Recognition, Lecture Notes in Computer Science, 301, 587-596 (1988)
[4] Buckley, M. J.; Eagleson, G. K.; Silverman, B. W., The estimation of residual variance in nonparametric regression, Biometrika, 75, 2, 189-199 (1988) · Zbl 0639.62032
[5] Eubank, R. L.; Spiegelman, C. H., Testing the goodness of fit of a linear model via nonparametric regression techniques, Journal of the American Statistical Association, 85, 410, 387-392 (1990)
[6] Gasser, T.; Kneip, A.; Köhler, W., A flexible and fast method for automatic smoothing, Journal of the American Statistical Association, 86, 415, 643-652 (1991)
[7] Härdle, W.; Tsybakov, A., Local polynomial estimators of the volatility function in nonparametric autoregression, Journal of Econometrics, 81, 1, 223-242 (1997) · Zbl 0904.62047
[8] Kulasekera, K. B.; Gallagher, C., Variance estimation in nonparametric multiple regression, Communications in Statistics A: Theory and Methods, 31, 8, 1373-1383 (2002) · Zbl 1075.62548
[9] Rice, J. A., Bandwidth choice for nonparametric regression, The Annals of Statistics, 12, 4, 1215-1230 (1984) · Zbl 0554.62035
[10] Gasser, T.; Sroka, L.; Jennen-Steinmetz, C., Residual variance and residual pattern in nonlinear regression, Biometrika, 73, 3, 625-633 (1986) · Zbl 0649.62035
[11] Hall, P.; Kay, J. W.; Titterington, D. M., Asymptotically optimal difference-based estimation of variance in nonparametric regression, Biometrika, 77, 3, 521-528 (1990) · Zbl 1377.62102
[12] Dette, H.; Munk, A.; Wagner, T., Estimating the variance in nonparametric regression—what is a reasonable choice?, Journal of the Royal Statistical Society B. Statistical Methodology, 60, 4, 751-764 (1998) · Zbl 0944.62041
[13] Müller, U. U.; Schick, A.; Wefelmeyer, W., Estimating the error variance in nonparametric regression by a covariate-matched u-statistic, Statistics, 37, 3, 179-188 (2003) · Zbl 1037.62036
[14] Tong, T.; Liu, A.; Wang, Y., Relative errors of difference-based variance estimators in nonparametric regression, Communications in Statistics A: Theory and Methods, 37, 18-20, 2890-2902 (2008) · Zbl 1292.62062
[15] Du, J.; Schick, A., A covariate-matched estimator of the error variance in nonparametric regression, Journal of Nonparametric Statistics, 21, 3, 263-285 (2009) · Zbl 1231.62065
[16] Wang, L.; Brown, L. D.; Cai, T. T., A difference based approach to the semiparametric partial linear model, Electronic Journal of Statistics, 5, 619-641 (2011) · Zbl 1329.62179
[17] Brown, L. D.; Levine, M., Variance estimation in nonparametric regression via the difference sequence method, The Annals of Statistics, 35, 5, 2219-2232 (2007) · Zbl 1126.62024
[18] Wang, L.; Brown, L. D.; Cai, T. T.; Levine, M., Effect of mean on variance function estimation in nonparametric regression, The Annals of Statistics, 36, 2, 646-664 (2008) · Zbl 1133.62033
[19] Cai, T. T.; Wang, L., Adaptive variance function estimation in heteroscedastic nonparametric regression, The Annals of Statistics, 36, 5, 2025-2054 (2008) · Zbl 1148.62021
[20] Tong, T.; Wang, Y., Estimating residual variance in nonparametric regression using least squares, Biometrika, 92, 4, 821-830 (2005) · Zbl 1151.62318
[21] Tong, T.; Ma, Y.; Wang, Y., Optimal variance estimation without estimating the mean function, Bernoulli, 19, 5, 1839-1854 (2013) · Zbl 1281.62105
[22] Park, C. G.; Kim, I.; Lee, Y.-S., Error variance estimation via least squares for small sample nonparametric regression, Journal of Statistical Planning and Inference, 142, 8, 2369-2385 (2012) · Zbl 1244.62061
[23] Bhansali, R. J.; Giraitis, L.; Kokoszka, P. S., Approximations and limit theory for quadratic forms of linear processes, Stochastic Processes and Their Applications, 117, 1, 71-95 (2007) · Zbl 1107.62038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.