## Optimal high-order methods for solving nonlinear equations.(English)Zbl 1442.65084

Summary: A class of optimal iterative methods for solving nonlinear equations is extended up to sixteenth-order of convergence. We design them by using the weight function technique, with functions of three variables. Some numerical tests are made in order to confirm the theoretical results and to compare the new methods with other known ones.

### MSC:

 65H05 Numerical computation of solutions to single equations
Full Text:

### References:

 [1] Ostrowski, A. M., Solution of Equations and System of Equations (1964), Englewood Cliffs, NJ, USA: Prentice-Hall, Englewood Cliffs, NJ, USA · Zbl 0138.09602 [2] Kung, H. T.; Traub, J. F., Optimal order of one-point and multipoint iteration, Journal of the Association for Computing Machinery, 21, 643-651 (1974) · Zbl 0289.65023 · doi:10.1145/321850.321860 [3] Petković, M. S.; Neta, B.; Vladimir Petković, L. D.; Džunić, J., Multipoint Methods for Solving Nonlinear Equations (2013), New York, NY, USA: Elsevier, New York, NY, USA · Zbl 1286.65060 [4] Artidiello, S.; Chicharro, F.; Cordero, A.; Torregrosa, J. R., Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods, International Journal of Computer Mathematics, 90, 10, 2049-2060 (2013) · Zbl 1291.65149 · doi:10.1080/00207160.2012.748900 [5] Chun, C.; Lee, M. Y.; Neta, B.; Džunić, J., On optimal fourth-order iterative methods free from second derivative and their dynamics, Applied Mathematics and Computation, 218, 11, 6427-6438 (2012) · Zbl 1277.65031 · doi:10.1016/j.amc.2011.12.013 [6] Kim, Y. I., A triparametric family of three-step optimal eighth-order methods for solving nonlinear equations, International Journal of Computer Mathematics, 89, 8, 1051-1059 (2012) · Zbl 1255.65093 · doi:10.1080/00207160.2012.673597 [7] Khan, Y.; Fardi, M.; Sayevand, K., A new general eighth-order family of iterative methods for solving nonlinear equations, Applied Mathematics Letters, 25, 12, 2262-2266 (2012) · Zbl 1252.65092 · doi:10.1016/j.aml.2012.06.014 [8] Džunić, J.; Petković, M. S., A family of three-point methods of Ostrowski’s type for solving nonlinear equations, Journal of Applied Mathematics, 2012 (2012) · Zbl 1239.65029 · doi:10.1155/2012/425867 [9] Soleymani, F.; Sharifi, M.; Mousavi, B. S., An improvement of Ostrowski’s and King’s techniques with optimal convergence order eight, Journal of Optimization Theory and Applications, 153, 1, 225-236 (2012) · Zbl 1237.90229 · doi:10.1007/s10957-011-9929-9 [10] Thukral, R., New sixteenth-order derivative-free methods for solving nonlinear equations, The American Journal of Computational and Applied Mathematics, 2, 3, 112-118 (2012) · Zbl 1360.65146 [11] Sharma, J. R.; Guha, R. K.; Gupta, P., Improved King’s methods with optimal order of convergence based on rational approximations, Applied Mathematics Letters, 26, 4, 473-480 (2013) · Zbl 1261.65047 · doi:10.1016/j.aml.2012.11.011 [12] Traub, J. F., Iterative Methods for the Solution of Equations (1964), New York, NY, USA: Prentice-Hall, New York, NY, USA · Zbl 0121.11204 [13] Chun, C., Some fourth-order iterative methods for solving nonlinear equations, Applied Mathematics and Computation, 195, 2, 454-459 (2008) · Zbl 1173.65031 · doi:10.1016/j.amc.2007.04.105 [14] King, R. F., A family of fourth order methods for nonlinear equations, SIAM Journal on Numerical Analysis, 10, 876-879 (1973) · Zbl 0266.65040 · doi:10.1137/0710072 [15] Zhao, L.; Wang, X.; Guo, W., New families of eighth-order methods with high efficiency index for solving nonlinear equations, WSEAS Transactions on Mathematics, 11, 283-293 (2012) [16] Džunić, J.; Petković, M. S.; Petković, L. D., A family of optimal three-point methods for solving nonlinear equations using two parametric functions, Applied Mathematics and Computation, 217, 19, 7612-7619 (2011) · Zbl 1216.65056 · doi:10.1016/j.amc.2011.02.055 [17] Weerakoon, S.; Fernando, T. G. I., A variant of Newton’s method with accelerated third-order convergence, Applied Mathematics Letters, 13, 8, 87-93 (2000) · Zbl 0973.65037 · doi:10.1016/S0893-9659(00)00100-2 [18] Escobal, P. R., Methods of Orbit Determination (1965), Robert E. Krieger Publishing Company [19] Cordero, A.; Torregrosa, J. R., Variants of Newton’s method using fifth-order quadrature formulas, Applied Mathematics and Computation, 190, 1, 686-698 (2007) · Zbl 1122.65350 · doi:10.1016/j.amc.2007.01.062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.