The coupled nonlinear Schrödinger equations describing power and phase for modeling phase-sensitive parametric amplification in silicon waveguides. (English) Zbl 1463.35465

Summary: The coupled nonlinear Schrödinger (NLS) equations describing power and phase of the optical waves are used to model phase-sensitive (PS) parametric amplification in a width-modulated silicon-on-insulator (SOI) channel waveguide. Through solving the coupled NLS equations by the split-step Fourier and Runge-Kutta integration methods, the numerical results show that the coupled NLS equations can perfectly describe and character the PS amplification process in silicon waveguides.


35Q55 NLS equations (nonlinear Schrödinger equations)
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI


[1] Leuthold, J.; Koos, C.; Freude, W., Nonlinear silicon photonics, Nature Photonics, 4, 8, 535-544 (2010)
[2] Yin, L.; Agrawal, G. P., Impact of two-photon absorption on self-phase modulation in silicon waveguides, Optics Letters, 32, 14, 2031-2033 (2007)
[3] Lin, Q.; Zhang, J.; Fauchet, P. M.; Agrawal, G. P., Ultrabroadband parametric generation and wavelength conversion in silicon waveguides, Optics Express, 14, 11, 4786-4799 (2006)
[4] Wang, Z.; Liu, H.; Huang, N.; Sun, Q.; Wen, J., Impact of dispersion profiles of silicon waveguides on optical parametric amplification in the femtosecond regime, Optics Express, 19, 24, 24730-24737 (2011)
[5] Li, X.; Wang, Z.; Liu, H., Optimizing initial chirp for efficient femtosecond wavelength conversion in silicon waveguide by split-step Fourier method, Applied Mathematics and Computation, 218, 24, 11970-11975 (2012) · Zbl 1290.78015
[6] Zhang, Q.; Hayee, M. I., Symmetrized split-step fourier scheme to control global simulation accuracy in fiber-optic communication systems, Journal of Lightwave Technology, 26, 2, 302-316 (2008)
[7] Wang, H., Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations, Applied Mathematics and Computation, 170, 1, 17-35 (2005) · Zbl 1082.65570
[8] Xu, X.; Taha, T., Parallel split-step Fourier methods for nonlinear Schrödinger-type equations, Journal of Mathematical Modelling and Algorithms, 2, 3, 185-201 (2003) · Zbl 1047.65072
[9] Muslu, G. M.; Erbay, H. A., Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation, Mathematics and Computers in Simulation, 67, 6, 581-595 (2005) · Zbl 1064.65117
[10] Tong, Z.; Lundstrm, C.; Andrekson, P. A.; Karlsson, M.; Bogris, A., Ultralow noise, broadband phase-sensitive optical amplifiers, and their applications, IEEE Journal on Selected Topics in Quantum Electronics, 18, 2, 1016-1032 (2012)
[11] Hansryd, J.; Andrekson, P. A.; Westlund, M.; Li, J.; Hedekvist, P., Fiber-based optical parametric amplifiers and their applications, IEEE Journal on Selected Topics in Quantum Electronics, 8, 3, 506-520 (2002)
[12] Hang, R.; Lasri, J.; Devgan, P. S.; Grigoryan, V.; Kumar, P.; Vasilyev, M., Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input, Optics Express, 13, 26, 10483-10493 (2005)
[13] Zhang, S.; Deng, Z.; Li, W., A precise Runge-Kutta integration and its application for solving nonlinear dynamical systems, Applied Mathematics and Computation, 184, 2, 496-502 (2007) · Zbl 1114.65084
[14] Liu, M. Z.; Ma, S. F.; Yang, Z. W., Stability analysis of Runge-Kutta methods for unbounded retarded differential equations with piecewise continuous arguments, Applied Mathematics and Computation, 191, 1, 57-66 (2007) · Zbl 1193.65122
[15] Attili, B. S.; Furati, K.; Syam, M. I., An efficient implicit Runge-Kutta method for second order systems, Applied Mathematics and Computation, 178, 2, 229-238 (2006) · Zbl 1100.65062
[16] Wang, Z.; Liu, H.; Huang, N.; Sun, Q.; Wen, J., Influence of spectral broadening on femtosecond wavelength conversion based on four-wave mixing in silicon waveguides, Applied Optics, 50, 28, 5430-5436 (2011)
[17] Espinola, R. L.; Dadap, J. I.; Osgood, R. M.; McNab, S. J.; Vlasov, Y. A., C-band wavelength conversion in silicon photonic wire waveguides, Optics Express, 13, 11, 4341-4349 (2005)
[18] Agrawal, G. P., Nonlinear Fiber Optics (2007)
[19] Yin, L.; Lin, Q.; Agrawal, G. P., Soliton fission and supercontinuum generation in silicon waveguides, Optics Letters, 32, 4, 391-393 (2007)
[20] Jin, B.; Yuan, J.; Yu, C.; Sang, X.; Wei, S.; Zhang, X.; Wu, Q.; Farrell, G., Efficient and broadband parametric wavelength conversion in a vertically etched silicon grating without dispersion engineering, Optics Express, 22, 6257-6268 (2014)
[21] Rong, H.; Kuo, Y.; Liu, A.; Paniccia, M.; Cohen, O., High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides, Optics Express, 14, 3, 1182-1188 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.