×

Discontinuous mixed covolume methods for linear parabolic integrodifferential problems. (English) Zbl 1442.65401

Summary: The semidiscrete and fully discrete discontinuous mixed covolume schemes for the linear parabolic integrodifferential problems on triangular meshes are proposed. The error analysis of the semidiscrete and fully discrete discontinuous mixed covolume scheme is presented and the optimal order error estimate in discontinuous \(H(\operatorname{div})\) and first-order error estimate in \(L^2\) are obtained with the lowest order Raviart-Thomas mixed element space.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65R20 Numerical methods for integral equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Thomée, V.; Zhang, N. Y., Error estimates for semidiscrete finite element methods for parabolic integro-differential equations, Mathematics of Computation, 53, 187, 121-139 (1989) · Zbl 0673.65099
[2] Pani, A. K.; Fairweather, G., \(H^1\)-Galerkin mixed finite element methods for parabolic partial integro-differential equations, IMA Journal of Numerical Analysis, 22, 2, 231-252 (2002) · Zbl 1008.65101
[3] Chen, C.; Thomee, V.; Wahlbin, L. B., Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel, Mathematics of Computation, 58, 198, 587-602 (1992) · Zbl 0766.65120
[4] Zhu, A.; Yang, Q., Expanded mixed finite element methods for parabolic integro-differential equations, Journal of Shandong Normal University, 19, 2, 10-14 (2004)
[5] Zhu, A.; Jiang, Z.; Xu, Q., Expanded mixed covolume method for a linear integro-differential equation of parabolic type, Numerical Mathematics, 31, 3, 193-205 (2009) · Zbl 1212.65536
[6] Reed, W. H.; Hill, T. R., Triangular mesh methods for the neutron transport equation, LA-UR-73-479 (1973), Los Alamos, NM, USA: Los Alamos Scientific Laboratory, Los Alamos, NM, USA
[7] Cockburn, B.; Hou, S.; Shu, C. W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Mathematics of Computation, 54, 190, 545-581 (1990) · Zbl 0695.65066
[8] Cockburn, B.; Karniaddakis, G. E.; Shu, C. W., The Development of Discontinuous Galerkin Methods (2000), Berlin, Germany: Springer, Berlin, Germany
[9] Cockburn, B.; Shu, C., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM Journal on Numerical Analysis, 35, 6, 2440-2463 (1998) · Zbl 0927.65118
[10] Riviere, B.; Wheeler, M. F.; Girault, V., Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems—part I, Computational Geosciences, 3, 3-4, 337-360 (1999) · Zbl 0951.65108
[11] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM Journal on Numerical Analysis, 39, 5, 1749-1779 (2002) · Zbl 1008.65080
[12] Ye, X., A new discontinuous finite volume method for elliptic problems, SIAM Journal on Numerical Analysis, 42, 3, 1062-1072 (2004) · Zbl 1079.65116
[13] Ye, X., A discontinuous finite volume method for the Stokes problems, SIAM Journal on Numerical Analysis, 44, 1, 183-198 (2006) · Zbl 1112.65125
[14] Bi, C.; Geng, J., Discontinuous finite volume element method for parabolic problems, Numerical Methods for Partial Differential Equations, 26, 2, 367-383 (2010) · Zbl 1189.65203
[15] Yang, Q.; Jiang, Z., A discontinuous mixed covolume method for elliptic problems, Journal of Computational and Applied Mathematics, 235, 8, 2467-2476 (2011) · Zbl 1211.65145
[16] Zhu, A.; Jiang, Z., Discontinuous mixed covolume methods for parabolic problems, The Scientific World Journal, 2014 (2014)
[17] Adams, R. A., Sobolev Spaces (1975), New York, NY, USA: Academic Press, New York, NY, USA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.