×

Laguerre collocation method for solving Fredholm integro-differential equations with functional arguments. (English) Zbl 1442.65454

Summary: Laguerre collocation method is applied for solving a class of the Fredholm integro-differential equations with functional arguments. This method transforms the considered problem to a matrix equation which corresponds to a system of linear algebraic equations. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments. Also, the approximate solutions are corrected by using the residual correction method.

MSC:

65R20 Numerical methods for integral equations
45J05 Integro-ordinary differential equations
45B05 Fredholm integral equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agarwal, R. P., Contributions in Numerical Mathematics (1993), Singapore: World Scientific Publishing, Singapore · Zbl 0829.00032 · doi:10.1142/9789812798886
[2] Agarwal, R. P., Dynamical Systems and Applications (1995), Singapore: World Scientific Publishing, Singapore · Zbl 0834.00036 · doi:10.1142/9789812796417
[3] Dieudonné, J., Orthogonal Polynomials and Applications (1985) · Zbl 0665.42024
[4] Chandrasekhar, S., An Introduction to the Study of Stellar Structure (1957), New York, NY, USA: Dover Publications, New York, NY, USA · Zbl 0079.23901
[5] Rashidinia, J.; Tahmasebi, A.; Rahmany, S., A reliable treatment for nonlinear Volterra integro-differential, Journal of Information and Computing Science, 9, 1, 3-10 (2014)
[6] Chen, Z.; Cheng, X., An efficient algorithm for solving Fredholm integro-differential equations with weakly singular kernels, Journal of Computational and Applied Mathematics, 257, 57-64 (2014) · Zbl 1294.65112 · doi:10.1016/j.cam.2013.08.018
[7] Pipe, J. G.; Zwart, N. R., Spiral trajectory design: a flexible numerical algorithm and base analytical equations, Magnetic Resonance in Medicine, 71, 278-285 (2014) · doi:10.1002/mrm.24675
[8] Farnoosh, R.; Ebrahimi, M., Monte Carlo method for solving Fredholm integral equations of the second kind, Applied Mathematics and Computation, 195, 1, 309-315 (2008) · Zbl 1131.65109 · doi:10.1016/j.amc.2007.04.097
[9] Ghosh, A.; Elber, R.; Scheraga, H. A., An atomically detailed study of the folding pathways of protein A with the stochastic difference equation, Proceedings of the National Academy of Sciences of the United States of America, 99, 16, 10394-10398 (2002) · doi:10.1073/pnas.142288099
[10] Wang, K.; Wang, Q., Taylor collocation method and conveergence analysis for the Volterra-Fredholm integral equations, Journal of Computational and Applied Mathematics, 260, 294-300 (2014) · Zbl 1293.65174 · doi:10.1016/j.cam.2013.09.050
[11] Ovchinnikov, A., Difference integrability conditions for parameterized linear difference and differential equations, Advances in Applied Mathematics, 53, 61-71 (2014) · Zbl 1315.12004 · doi:10.1016/j.aam.2013.09.007
[12] Andrews, G. A.; Askey, R.; Roy, R., Special Functions (2000), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 1075.33500
[13] Sahu, P. K.; Saha Ray, S., Numerical solutions for the system of Fredholm integral equations of second kind by a new approach involving semiorthogonal B-spline wavelet collocation method, Applied Mathematics and Computation, 234, 368-379 (2014) · Zbl 1298.65196 · doi:10.1016/j.amc.2014.02.043
[14] Sedaghat, S.; Ordokhani, Y.; Dehghan, M., On spectral method for Volterra functional integro-differential equations of neutral type, Numerical Functional Analysis and Optimization, 35, 2, 223-239 (2014) · Zbl 1311.65170 · doi:10.1080/01630563.2013.867189
[15] Mashayekhi, S.; Razzaghi, M.; Tripak, O., Solution of the nonlinear mixed Volterra-Fredholm integral equations by hybrid of blockpulse functions and Bernoulli polynomials, The Scientific World Journal, 2014 (2014) · doi:10.1155/2014/413623
[16] Gülsu, M.; Öztürk, Y.; Sezer, M., Numerical approach for solving Volterra integro differential equations with piecewise intervals, Journal of Advanced Research in Applied Mathematics, 4, 1, 23-37 (2012) · doi:10.5373/jaram.615.102710
[17] Gülsu, M.; Öztürk, Y., Numerical approach for the solution of hypersingular integro-differential equations, Applied Mathematics and Computation, 230, 701-710 (2014) · Zbl 1410.65495
[18] Gürbüz, B.; Gülsu, M.; Sezer, M., Numerical approach of high-order linear delay difference equations with variable coefficients in terms of Laguerre polynomials, Mathematical and Computational Applications, 16, 1, 267-278 (2011) · Zbl 1227.65062
[19] Akyüz-Daşcıoğlu, A.; Çerdik-Yaslan, H., The solution of high-order nonlinear ordinary differential equations by Chebyshev series, Applied Mathematics and Computation, 217, 12, 5658-5666 (2011) · Zbl 1209.65068 · doi:10.1016/j.amc.2010.12.044
[20] Erdem, K.; Yalçinbaş, S.; Sezer, M., A Bernoulli polynomial approach with residual correction for solving mixed linear Fredholm integro-differential-difference equations, Journal of Difference Equations and Applications, 19, 10, 1619-1631 (2013) · Zbl 1277.65114 · doi:10.1080/10236198.2013.768619
[21] Yüzbaşı, Ş.; Gök, E.; Sezer, M., Müntz-Legendre polynomial solutions of linear delay Fredholm integro-differential equations and residual correction, Mathematical and Computational Applications, 18, 3, 476-485 (2013) · Zbl 1396.65168
[22] Yüzbaşı, Ş.; Sezer, M., An improved Bessel collocation method with a residual error function to solve a class of Lane-Emden differential equations, Mathematical and Computer Modelling, 57, 5-6, 1298-1311 (2013) · doi:10.1016/j.mcm.2012.10.032
[23] Sezer, M.; Gülsu, M., A new polynomial approach for solving difference and Fredholm integro-difference equations with mixed argument, Applied Mathematics and Computation, 171, 1, 332-344 (2005) · Zbl 1084.65133 · doi:10.1016/j.amc.2005.01.051
[24] Gülsu, M.; Öztürk, Y., A new collocation method for solution of mixed linear integro-differential-difference equations, Applied Mathematics and Computation, 216, 7, 2183-2198 (2010) · Zbl 1192.65161 · doi:10.1016/j.amc.2010.03.054
[25] Yalçinbaş, S.; Akkaya, T., A numerical approach for solving linear integro-differential-difference equations with Boubaker polynomial bases, Ain Shams Engineering Journal, 3, 2, 153-161 (2012) · doi:10.1016/j.asej.2012.02.004
[26] Doha, E. H.; Baleanu, D.; Bhrawy, A. H.; Abdelkawy, M. A., A Jacobi collocation method for solving nonlinear Burgers-type equations, Abstract and Applied Analysis, 2013 (2013) · Zbl 1470.65174 · doi:10.1155/2013/760542
[27] Alavi, S.; Heydari, A., An Analytic approximate solution of the matrix Riccati differential equation arising from the LQ optimal control problems, Journal of Advances in Mathematics, 5, 3, 731-738 (2014)
[28] Dahm, J. P.; Arbor, A.; Fidkowski, K., Error estimation and adaptation in hybridized discontinous Galerkin methods, Proceedings of the 52nd Aerospace Sciences Meeting, The AIAA SciTech
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.