An offline formulation of MPC for LPV systems using linear matrix inequalities. (English) Zbl 1463.93065

Summary: An offline model predictive control (MPC) algorithm for linear parameter varying (LPV) systems is presented. The main contribution is to develop an offline MPC algorithm for LPV systems that can deal with both time-varying scheduling parameter and persistent disturbance. The norm-bounding technique is used to derive an offline MPC algorithm based on the parameter-dependent state feedback control law and the parameter-dependent Lyapunov functions. The online computational time is reduced by solving offline the linear matrix inequality (LMI) optimization problems to find the sequences of explicit state feedback control laws. At each sampling instant, a parameter-dependent state feedback control law is computed by linear interpolation between the precomputed state feedback control laws. The algorithm is illustrated with two examples. The results show that robust stability can be ensured in the presence of both time-varying scheduling parameter and persistent disturbance.


93B45 Model predictive control
93C05 Linear systems in control theory
93D09 Robust stability
93B52 Feedback control


Full Text: DOI


[1] Morari, M.; H. Lee, J., Model predictive control: past, present and future, Computers and Chemical Engineering, 23, 4-5, 667-682 (1999)
[2] Mayne, D. Q.; Rawlings, J. B.; Rao, C. V.; Scokaert, P. O. M., Constrained model predictive control: stability and optimality, Automatica, 36, 6, 789-814 (2000) · Zbl 0949.93003
[3] Qin, S. J.; Badgwell, T. A., A survey of industrial model predictive control technology, Control Engineering Practice, 11, 7, 733-764 (2003)
[4] Kothare, M. V.; Balakrishnan, V.; Morari, M., Robust constrained model predictive control using linear matrix inequalities, Automatica, 32, 10, 1361-1379 (1996) · Zbl 0897.93023
[5] Camacho, E. F.; Bordons, C., Model Predictive Control (2004), London, UK: Springer, London, UK
[6] Jungers, M.; Oliveira, R. C. L. F.; Peres, P. L. D., MPC and LPV systems with bounded parameter variations, International Journal of Control, 84, 1, 24-36 (2011) · Zbl 1222.93136
[7] Yu, S.; Böhm, C.; Chen, H.; Allgöwer, F., Model predictive control of constrained LPV systems, International Journal of Control, 85, 6, 671-683 (2012) · Zbl 1256.93039
[8] Boyd, S.; Vandenberghe, L., Convex Optimization (2004), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 1058.90049
[9] Lu, Y.; Arkun, Y., Quasi-min-max MPC algorithms for LPV systems, Automatica, 36, 4, 527-540 (2000) · Zbl 0981.93027
[10] Wada, N.; Saito, K.; Saeki, M., Model predictive control for linear parameter varying systems using parameter dependent Lyapunov function, IEEE Transactions on Circuits and Systems II: Express Briefs, 53, 12, 1446-1450 (2006)
[11] Casavola, A.; Famularo, D.; Franzè, G., A feedback min-max MPC algorithm for LPV systems subject to bounded rates of change of parameters, IEEE Transactions on Automatic Control, 47, 7, 1147-1153 (2002) · Zbl 1364.93389
[12] Park, P.; Jeong, S. C., Constrained RHC for LPV systems with bounded rates of parameter variations, Automatica, 40, 5, 865-872 (2004) · Zbl 1050.93025
[13] Suzuki, H.; Sugie, T., Model predictive control for linear parameter varying constrained systems using ellipsoidal set prediction, International Journal of Control, 80, 2, 314-321 (2007) · Zbl 1133.93328
[14] Brooms, A. C.; Kouvaritakis, B.; Lee, Y. I., Constrained MPC for uncertain linear systems with ellipsoidal target sets, Systems & Control Letters, 44, 3, 157-166 (2001) · Zbl 1103.93361
[15] Bumroongsri, P.; Kheawhom, S., An ellipsoidal off-line model predictive control strategy for linear parameter varying systems with applications in chemical processes, Systems & Control Letters, 61, 3, 435-442 (2012) · Zbl 1250.93053
[16] Besselmann, T.; Löfberg, J.; Morari, M., Explicit MPC for LPV systems: stability and optimality, IEEE Transactions on Automatic Control, 57, 9, 2322-2332 (2012) · Zbl 1369.93331
[17] Ding, B., Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi-Sugeno’s form, Automatica, 45, 9, 2093-2098 (2009) · Zbl 1175.93121
[18] Ding, B., Constrained robust model predictive control via parameter-dependent dynamic output feedback, Automatica, 46, 9, 1517-1523 (2010) · Zbl 1201.93039
[19] Langson, W.; Chryssochoos, I.; Raković, S. V.; Mayne, D. Q., Robust model predictive control using tubes, Automatica, 40, 1, 125-133 (2004) · Zbl 1036.93019
[20] Limon, D.; Alvarado, I.; Alamo, T.; Camacho, E. F., Robust tube-based MPC for tracking of constrained linear systems with additive disturbances, Journal of Process Control, 20, 3, 248-260 (2010)
[21] Gonzalez, R.; Fiacchini, M.; Alamo, T.; Guzman, J. L.; Rodriguez, F., Online robust tube-based MPC for time-varying systems: a practical approach, International Journal of Control, 84, 6, 1157-1170 (2011) · Zbl 1245.93041
[22] Wan, Z.; Kothare, M. V., An efficient off-line formulation of robust model predictive control using linear matrix inequalities, Automatica, 39, 5, 837-846 (2003) · Zbl 1032.93020
[23] Ding, B. C.; Xi, Y.; Cychowski, M. T.; O’Mahony, T., A synthesis approach for output feedback robust constrained model predictive control, Automatica, 44, 1, 258-264 (2008) · Zbl 1138.93340
[24] Sturm, J. F., Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software, 11/12, 1-4, 625-653 (1999) · Zbl 0973.90526
[25] Löfberg, J., Automatic robust convex programming, Optimization Methods & Software, 27, 1, 115-129 (2012) · Zbl 1242.90289
[26] Ding, B.; Huang, B., Reformulation of LMI-based stabilisation conditions for non-linear systems in Takagi-Sugeno’s form, International Journal of Systems Science. Principles and Applications of Systems and Integration, 39, 5, 487-496 (2008) · Zbl 1167.93364
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.