×

\(1:3\) resonance and chaos in a discrete Hindmarsh-Rose model. (English) Zbl 1442.37101

Summary: \(1:3\) resonance of a two-dimensional discrete Hindmarsh-Rose model is discussed by normal form method and bifurcation theory. Numerical simulations are presented to illustrate the theoretical analysis, which predict the occurrence of a closed invariant circle, period-three saddle cycle, and homoclinic structure. Furthermore, it also displays the complex dynamical behaviors, especially the transitions between three main dynamical behaviors, namely, quiescence, spiking, and bursting.

MSC:

37N25 Dynamical systems in biology
92C20 Neural biology
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (1983), Berlin, Germany: Springer, Berlin, Germany · Zbl 0515.34001
[2] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory (2004), New York, NY, USA: Springer, New York, NY, USA · Zbl 1082.37002
[3] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2 (2003), New York, NY, USA: Springer, New York, NY, USA · Zbl 1027.37002
[4] Hindmarsh, J. L.; Rose, R. M., A model of the nerve impulse using two first-order differential equations, Nature, 296, 5853, 162-164 (1982)
[5] FitzHugh, R., Impulses and physiological state in theoretical models of nerve membrane, Biophysical Journal, 1, 445-467 (1961)
[6] Nagumo, J.; Arimoto, S.; Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proceedings of the IRE, 50, 2061-2070 (1962)
[7] Gonzalez-Miranda, J. M., Complex bifurcation structures in the Hindmarsh-Rose neuron model, International Journal of Bifurcation and Chaos, 17, 9, 3071-3083 (2007) · Zbl 1185.37189
[8] Liu, X.; Liu, S., Codimension-two bifurcation analysis in two-dimensional Hindmarsh-Rose model, Nonlinear Dynamics, 67, 1, 847-857 (2012) · Zbl 1245.34047
[9] Storace, M.; Linaro, D.; de Lange, E., The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations, Chaos, 18, 3 (2008)
[10] Nikolov, S., An alternative bifurcation analysis of the Rose-Hindmarsh model, Chaos, Solitons and Fractals, 23, 5, 1643-1649 (2005) · Zbl 1066.92009
[11] Tsuji, S.; Ueta, T.; Kawakami, H.; Fujii, H.; Aihara, K., Bifurcations in two-dimensional Hindmarsh-Rose type model, International Journal of Bifurcation and Chaos, 17, 3, 985-998 (2007) · Zbl 1142.37380
[12] Linaro, D.; Champneys, A.; Desroches, M.; Storace, M., Codimension-two homoclinic bifurcations underlying spike adding in the Hindmarsh-Rose burster, SIAM Journal on Applied Dynamical Systems, 11, 3, 939-962 (2012) · Zbl 1263.37036
[13] Shilnikov, A.; Kolomiets, M., Methods of the qualitative theory for the Hindmarsh-Rose model: a case study. A tutorial, International Journal of Bifurcation and Chaos, 18, 8, 2141-2168 (2008) · Zbl 1165.34364
[14] Chen, Q.; Teng, Z.; Wang, L.; Jiang, H., The existence of codimension-two bifurcation in a discrete SIS epidemic model with standard incidence, Nonlinear Dynamics. An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems, 71, 1-2, 55-73 (2013) · Zbl 1269.92062
[15] He, Z.; Lai, X., Bifurcation and chaotic behavior of a discrete-time predator-prey system, Nonlinear Analysis. Real World Applications, 12, 1, 403-417 (2011) · Zbl 1202.93038
[16] He, Z.; Qiu, J., Neimark-Sacker bifurcation of a third-order rational difference equation, Journal of Difference Equations and Applications, 19, 9, 1513-1522 (2013) · Zbl 1274.39034
[17] Hindmarsh, J. L.; Rose, R. M., A model of neuronal bursting using three coupled first order differential equations, Proceedings of the Royal Society of London Series B: Biological sciences, 221, 1222, 87-102 (1984)
[18] Hodgkin, A. L.; Huxley, A. F., A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, 117, 4, 500-544 (1952)
[19] Innocenti, G.; Morelli, A.; Genesio, R.; Torcini, A., Dynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaos, Chaos, 17, 4 (2007) · Zbl 1163.37336
[20] Jing, Z.; Chang, Y.; Guo, B., Bifurcation and chaos in discrete FitzHugh-Nagumo system, Chaos, Solitons & Fractals, 21, 3, 701-720 (2004) · Zbl 1048.37526
[21] Li, B.; He, Z., Bifurcations and chaos in a two-dimensional discrete Hindmarsh-Rose model, Nonlinear Dynamics, 76, 1, 697-715 (2014) · Zbl 1319.37024
[22] Liu, X.; Xiao, D., Complex dynamic behaviors of a discrete-time predator-prey system, Chaos, Solitons & Fractals, 32, 1, 80-94 (2007) · Zbl 1130.92056
[23] Chen, S.-S.; Cheng, C.-Y.; Lin, Y.-R., Application of a two-dimensional Hindmarsh-Rose type model for bifurcation analysis, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 23, 3 (2013) · Zbl 1270.34121
[24] Ma, S.; Feng, Z., Fold-Hopf bifurcations of the Rose-Hindmarsh model with time delay, International Journal of Bifurcation and Chaos, 21, 2, 437-452 (2011) · Zbl 1210.34115
[25] Terman, D., The transition from bursting to continuous spiking in excitable membrane models, Journal of Nonlinear Science, 2, 2, 135-182 (1992) · Zbl 0900.92059
[26] Wang, X.-J., Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle, Physica D: Nonlinear Phenomena, 62, 1-4, 263-274 (1993) · Zbl 0783.58053
[27] Li, B.; He, Z. M., 1 : 2 and 1 : 4 resonances in a two-dimensional discrete Hindmarsh-Rose model, Nonlinear Dynamics (2014) · Zbl 1331.92031
[28] Polyanin, A. D.; Chernoutsan, A. I., A Concise Handbook of Mathematics, Physics, and Engineering Science (2011), New York, NY, USA: CRC Press, New York, NY, USA · Zbl 1216.00001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.