×

Preconditioning filter bank decomposition using structured normalized tight frames. (English) Zbl 1435.65233

Summary: We turn a given filter bank into a filtering scheme that provides perfect reconstruction, synthesis is the adjoint of the analysis part (so-called unitary filter banks), all filters have equal norm, and the essential features of the original filter bank are preserved. Unitary filter banks providing perfect reconstruction are induced by tight generalized frames, which enable signal decomposition using a set of linear operators. If, in addition, frame elements have equal norm, then the signal energy is spread through the various filter bank channels in some uniform fashion, which is often more suitable for further signal processing. We start with a given generalized frame whose elements allow for fast matrix vector multiplication, as, for instance, convolution operators, and compute a normalized tight frame, for which signal analysis and synthesis still preserve those fast algorithmic schemes.

MSC:

65T60 Numerical methods for wavelets
42C15 General harmonic expansions, frames
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Christensen, O., An Introduction to Frames and Riesz Bases (2003), Boston, Mass, USA: Birkhäuser, Boston, Mass, USA · Zbl 1017.42022 · doi:10.1007/978-0-8176-8224-8
[2] Ehler, M., Random tight frames, The Journal of Fourier Analysis and Applications, 18, 1, 1-20 (2012) · Zbl 1247.42026 · doi:10.1007/s00041-011-9182-5
[3] Ehler, M.; Galanis, J., Frame theory in directional statistics, Statistics & Probability Letters, 81, 8, 1046-1051 (2011) · Zbl 1218.62051 · doi:10.1016/j.spl.2011.02.027
[4] Ehler, M.; Okoudjou, K. A., Minimization of the probabilistic \(p\)-frame potential, Journal of Statistical Planning and Inference, 142, 3, 645-659 (2012) · Zbl 1229.62069 · doi:10.1016/j.jspi.2011.09.001
[5] Sun, W., G-frames and g-Riesz bases, Journal of Mathematical Analysis and Applications, 322, 1, 437-452 (2006) · Zbl 1129.42017 · doi:10.1016/j.jmaa.2005.09.039
[6] Casazza, P. G.; Kutyniok, G.; Li, S., Fusion frames and distributed processing, Applied and Computational Harmonic Analysis, 25, 1, 114-132 (2008) · Zbl 1258.42029 · doi:10.1016/j.acha.2007.10.001
[7] Chebira, A.; Fickus, M.; Mixon, D. G., Filter bank fusion frames, IEEE Transactions on Signal Processing, 59, 3, 953-963 (2011) · Zbl 1392.94135 · doi:10.1109/TSP.2010.2097255
[8] Bachoc, C.; Ehler, M., Tight p-fusion frames, Applied and Computational Harmonic Analysis, 35, 1, 1-15 (2013) · Zbl 1293.42031 · doi:10.1016/j.acha.2012.07.001
[9] Kutyniok, G.; Pezeshki, A.; Calderbank, R.; Liu, T., Robust dimension reduction, fusion frames, and Grassmannian packings, Applied and Computational Harmonic Analysis, 26, 1, 64-76 (2009) · Zbl 1283.42046 · doi:10.1016/j.acha.2008.03.001
[10] Bodmann, B. G.; Casazza, P. G., The road to equal-norm Parseval frames, Journal of Functional Analysis, 258, 2, 397-420 (2010) · Zbl 1194.46018 · doi:10.1016/j.jfa.2009.08.015
[11] Cahill, J.; Casazza, P. G., The Paulsen problem in operator theory, Operators and Matrices, 7, 1, 117-130 (2013) · Zbl 1269.42020 · doi:10.7153/oam-07-06
[12] Casazza, P. G.; Fickus, M.; Mixon, D. G., Auto-tuning unit norm frames, Applied and Computational Harmonic Analysis, 32, 1, 1-15 (2012) · Zbl 1230.42037 · doi:10.1016/j.acha.2011.02.005
[13] Wiesmeyr, C.; Holighaus, N.; Sondergaard, P. L., Efficient algorithms for discrete Gabor transforms on a nonseparable lattice, IEEE Transactions on Signal Processing, 61, 20, 5131-5142 (2013) · Zbl 1393.94492 · doi:10.1109/tsp.2013.2275311
[14] Tyler, D. E., A distribution-free \(M\)-estimator of multivariate scatter, The Annals of Statistics, 15, 1, 234-251 (1987) · Zbl 0628.62053 · doi:10.1214/aos/1176350263
[15] Kent, J. T.; Tyler, D. E., Maximum likelihood estimation for the wrapped Cauchy distribution, Journal of Applied Statistics, 15, 2, 247-254 (1988) · doi:10.1080/02664768800000029
[16] Tyler, D. E., Statistical analysis for the angular central Gaussian distribution on the sphere, Biometrika, 74, 3, 579-589 (1987) · Zbl 0628.62054 · doi:10.1093/biomet/74.3.579
[17] Chai, L.; Zhang, J.; Han, Q.-L., Optimal two-sided diagonal scaling for filter bank frames, IEEE Transactions on Signal Processing, 59, 12, 5830-5841 (2011) · Zbl 1393.94792 · doi:10.1109/TSP.2011.2165710
[18] Chai, L.; Zhang, J.; Zhang, C.; Mosca, E., Bound ratio minimization of filter bank frames, IEEE Transactions on Signal Processing, 58, 1, 209-220 (2010) · Zbl 1392.94127 · doi:10.1109/tsp.2009.2028117
[19] Balazs, P.; Feichtinger, H. G.; Hampejs, M.; Kracher, G., Double preconditioning for Gabor frames, IEEE Transactions on Signal Processing, 54, 12, 4597-4610 (2006) · Zbl 1203.65069 · doi:10.1109/tsp.2006.882100
[20] Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli, E. P., Image quality assessment: from error visibility to structural similarity, IEEE Transactions on Image Processing, 13, 4, 600-612 (2004) · doi:10.1109/tip.2003.819861
[21] Casazza, P. G.; Kutyniok, G., A generalization of Gram-Schmidt orthogonalization generating all Parseval frames, Advances in Computational Mathematics, 27, 1, 65-78 (2007) · Zbl 1118.65027 · doi:10.1007/s10444-005-7478-1
[22] Benedetto, J. J.; Fickus, M., Finite normalized tight frames, Advances in Computational Mathematics, 18, 2-4, 357-385 (2003) · Zbl 1028.42022 · doi:10.1023/a:1021323312367
[23] Kutyniok, G.; Okoudjou, K. A.; Philipp, F.; Tuley, E. K., Scalable frames, Linear Algebra and Its Applications, 438, 5, 2225-2238 (2013) · Zbl 1260.42023 · doi:10.1016/j.laa.2012.10.046
[24] Frank, M.; Paulsen, V. I.; Tiballi, T. R., Symmetric approximation of frames and bases in Hilbert spaces, Transactions of the American Mathematical Society, 354, 2, 777-793 (2002) · Zbl 0984.42021 · doi:10.1090/s0002-9947-01-02838-0
[25] Bachoc, C.; Ehler, M., Signal reconstruction from the magnitude of subspace components, IEEE Transactions on Information Theory, 61, 7, 1-13 (2015) · Zbl 1359.94057 · doi:10.1109/tit.2015.2429634
[26] Vershynin, R., How close is the sample covariance matrix to the actual covariance matrix?, Journal of Theoretical Probability, 25, 3, 655-686 (2012) · Zbl 1365.62208 · doi:10.1007/s10959-010-0338-z
[27] Bodmann, B. G., Random fusion frames are nearly equiangular and tight, Linear Algebra and its Applications, 439, 5, 1401-1414 (2013) · Zbl 1282.42028 · doi:10.1016/j.laa.2013.04.024
[28] Tropp, J. A., User-friendly tail bounds for sums of random matrices, Foundations of Computational Mathematics, 12, 4, 389-434 (2012) · Zbl 1259.60008 · doi:10.1007/s10208-011-9099-z
[29] Uhlig, H., On singular Wishart and singular multivariate Beta distributions, The Annals of Statistics, 22, 1, 395-405 (1994) · Zbl 0795.62052 · doi:10.1214/aos/1176325375
[30] Pfander, G. E.; Rauhut, H.; Tropp, J. A., The restricted isometry property for time-frequency structured random matrices, Probability Theory and Related Fields, 156, 3-4, 707-737 (2013) · Zbl 1284.60018 · doi:10.1007/s00440-012-0441-4
[31] Lawrence, J.; Pfander, G. E.; Walnut, D., Linear independence of Gabor systems in finite dimensional vector spaces, The Journal of Fourier Analysis and Applications, 11, 6, 715-726 (2005) · Zbl 1099.42027 · doi:10.1007/s00041-005-5017-6
[32] Rauhut, H.; Romberg, J.; Tropp, J. A., Restricted isometries for partial random circulant matrices, Applied and Computational Harmonic Analysis, 32, 2, 242-254 (2012) · Zbl 1245.15040 · doi:10.1016/j.acha.2011.05.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.