On a 2D model of avascular tumor with weak Allee effect. (English) Zbl 1442.92069

Summary: Recent studies reveal that Allee effect may play important roles in the growth of tumor. We present one of the first mathematical models of avascular tumor that incorporates the weak Allee effect. The model considers the densities of tumor cells in three stages: proliferating cells, quiescent cells, and necrotic cells. We investigate how Allee effect impacts the growth of the avascular tumor. We also investigate the effect of apoptosis of proliferating cells and necrosis of quiescent cells. The system is numerically solved in 2D using different sets of parameters. We show that Allee effect and apoptosis play important roles in the growth of tumor and the formation of necrotic core.


92C50 Medical applications (general)
35Q92 PDEs in connection with biology, chemistry and other natural sciences
92C37 Cell biology
Full Text: DOI


[1] Tiina, R.; Chapman, S. J.; Philip, K. M., Mathematical models of avascular tumor growth, SIAM Rev, 69, 179-208 (2007) · Zbl 1117.93011
[2] Kleinsmith, L. J., Principles of Cancer Biology (2005), San Francisco, Calif, USA: Pearson Education, San Francisco, Calif, USA
[3] Nederman, T., Effects of vinblastine and 5-fluorouracil on human glioma and thyroid cancer cell monolayers and spheroids, Cancer Research, 44, 1, 254-258 (1984)
[4] Wallace, D. I.; Dunham, A.; Chen, P. X.; Chen, M.; Huynh, M.; Rheingold, E.; Prosper, O., A model for spheroid versus monolayer response of SK-N-SH neuroblastoma cells to treatment with 15-Deoxy-PGJ2, Computational and Mathematical Methods in Medicine, 2016 (2016)
[5] Zanoni, M.; Piccinini, F.; Arienti, C., 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained, Scientific Reports, 6 (2016)
[6] Carlsson, J.; Nilsson, K.; Westermark, B.; Pontén, J.; Sundström, C.; Larsson, E.; Bergh, J.; Påhlman, S.; Busch, C.; Collins, V. P., Formation and growth of multicellular spheroids of human origin, International Journal of Cancer, 31, 5, 523-533 (1983)
[7] Freyer, J. P., Role of necrosis in regulating the growth saturation of multicellular spheroids, Cancer Research, 48, 9, 2432-2439 (1988)
[8] Szlosarek, P.; Charles, K. A.; Balkwill, F. R., Tumour necrosis factor-α as a tumour promoter, European Journal of Cancer, 42, 6, 745-750 (2006)
[9] Kunz-Schugart, L. A.; Kreutz, M.; Knuechel, R., Multicelluar spheriods: a three-dimensional in vitro culture system to study tumor biology, International Journal of Experimental Pathology, 79, 1 (1998)
[10] Folkman, J.; Hochberg, M., Self-regulation of growth in three dimenions, Journal of Experimental Medicine, 138, 4, 745-753 (1973)
[11] Wallace, D. I.; Guo, X., Properties of tumor spheroid growth exhibited by simple mathematical models, Frontiers in Oncology, 3, article no. 51 (2013)
[12] MuellerKlieser, W. F., Tumor biology and experimental therapeutics, Critical Review in Oncology/Hematology, 36, 2-3, 123-139 (2000)
[13] Mueller-Klieser, W.; Freyer, J. P.; Sutherland, R. M., Influence of glucose and oxygen supply conditions on the oxygenation of multicellular spheroids, British Journal of Cancer, 53, 3, 345-353 (1986)
[14] Rutka, J. T.; Giblin, J. R.; Berens, M. E.; Bar‐Shiv, E.; Tokuda, K.; McCulloch, J. R.; Rosenblum, M. L.; Eessalu, T. E.; Aogarwal, B. B.; Bodell, W. J., The effects of human recombinant tumor necrosis factor on glioma‐derived cell lines: cellular proliferation, cytotoxicity, morphological and radioreceptor studies, International Journal of Cancer, 41, 4, 573-582 (1988)
[15] Kareva, I., What can ecology teach us about cancer?, Translational Oncology, 4, 5, 266-270 (2011)
[16] Korolev, K. S.; Xavier, J. B.; Gore, J., Turning ecology and evolution against cancer, Nature Reviews Cancer, 14, 5, 371-380 (2014)
[17] Basanta, D.; Anderson, A. R. A., Exploiting ecological principles to better understand cancer progression and treatment, Interface Focus, 3, 4 (2013)
[18] Allee, W. C.; Bowen, E. S., Studies in animal aggregations: mass protection against colloidal silver among goldfishes, Journal of Experimental Zoology, 61, 2, 185-207 (1932)
[19] Huszthy, P. C.; Daphu, I.; Niclou, S. P.; Stieber, D.; Nigro, J. M.; Sakariassen, P. O.; Miletic, H.; Thorsen, F.; Bjerkvig, R., In vivo models of primary brain tumors: Pitfalls and perspectives, Neuro-Oncology, 14, 8, 979-993 (2012)
[20] Tilkorn, D.; Daigeler, A.; Stricker, I.; Schaffran, A.; Schmitz, I.; Steinstraesser, L.; Hauser, J.; Ring, A.; Steinau, H.-U.; Al-Benna, S., Establishing efficient xenograft models with intrinsic vascularisation for growing primary human low-grade sarcomas, Anticancer Reseach, 31, 12, 4061-4066 (2011)
[21] Böttger, K.; Hatzikirou, H.; Voss-Böhme, A.; Cavalcanti-Adam, E. A.; Herrero, M. A.; Deutsch, A.; Alber, M. S., An emerging Allee effect is critical for tumor initiation and persistence, PLoS Computational Biology, 11, 9 (2015)
[22] Neufeld, Z.; von Witt, W.; Lakatos, D.; Wang, J.; Hegedus, B.; Czirok, A., The role of Allee effect in modelling post resection recurrence of glioblastoma, PLoS Computational Biology, 13, 11 (2017)
[23] Rejniak, K. A.; Anderson, A. R. A., A computational study of the development of epithelial acini: I. Sufficient conditions for the formation of a hollow structure, Bulletin of Mathematical Biology, 70, 3, 677-712 (2008) · Zbl 1144.92023
[24] Frieboes, H. B.; Jin, F.; Chuang, Y.-L.; Wise, S. M.; Lowengrub, J. S.; Cristini, V., Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogenesis, Journal of Theoretical Biology, 264, 4, 1254-1278 (2010) · Zbl 1406.92049
[25] Gerlee, P.; Anderson, A. R. A., Diffusion-limited tumour growth: simulations and analysis, Mathematical Biosciences and Engineering, 7, 2, 385-400 (2010) · Zbl 1259.82025
[26] Li, X.; Cristini, V.; Nie, Q.; Lowengrub, J. S., Nonlinear three-dimensional simulation of solid tumor growth, Discrete and Continuous Dynamical Systems - Series B, 7, 3, 581-604 (2007) · Zbl 1124.92022
[27] P Araujo, R.; McElwain, D. L. S., A history of the study of solid tumor growth: the contribution of mathematical modelling, Bull. Math. Biol, 66, 5, 1039 (2004) · Zbl 1334.92187
[28] Roose, T.; Chapman, S. J.; Maini, P. K., Mathematical models of avascular tumor growth, SIAM Review, 49, 2, 179-208 (2007) · Zbl 1117.93011
[29] Sewalt, L.; Harley, K.; van Heijster, P.; Balasuriya, S., Influences of Allee effects in the spreading of malignant tumours, Journal of Theoretical Biology, 394, 77-92 (2016) · Zbl 1343.92245
[30] Ward, J.; King, J. R., Mathematical modelling of avascular-tumour growth, Mathematical Medicine and Biology: A Journal of the IMA, 14, 1, 39-69 (1997) · Zbl 0866.92011
[31] Ward, J.; King, J. R., Mathematical modelling of avascular-tumour growth II: modelling growth saturation, Mathematical Medicine and Biology: A Journal of the IMA, 16, 2, 171-211 (1999) · Zbl 0943.92019
[32] Sherratt, J. A.; Chaplain, M. A. J., A new mathematical model for avascular tumour growth, Journal of Mathematical Biology, 43, 4, 291-312 (2001) · Zbl 0990.92021
[33] Zhu, H. Y.; Ou, C. H., Existence of traveling wavefronts for Sherratts avascular tumor model, Chaos, Solitons & Fractals, 44, 218-225 (2011) · Zbl 1219.92051
[34] Bertsch, M.; Hilhorst, D.; Izuhara, H.; Mimura, M., Travelling wave solutions of a parabolic-hyperbolic system for contact inhibition of cell-growh, European Journal of Applied Mathematics, 26, 3, 297-323 (2015) · Zbl 1383.92023
[35] Okubo, A.; Levin, S. A., Diffusion and Ecological Problems- Modern Perspectives (2001), Springer · Zbl 1027.92022
[36] Aronson, D. G.; Weinberger, H. F., Multidimensional nonlinear diffusion arising in population genetics, Advances in Mathematics, 30, 1, 33-76 (1978) · Zbl 0407.92014
[37] Fife, P. C., Lecture Notes in Biomathematics: Mathematical Aspects of Reacting and Diffusing Systems, 28 (1979), Springer-Verlag
[38] Altrock, P. M.; Liu, L. L.; Michor, F., The mathematics of cancer: integrating quantitative models, Nature Reviews Cancer, 15, 12, 730-745 (2015)
[39] Freyer, J. P.; Tustanoff, E.; Franko, A. J.; Sutherland, R. M., In situ oxygen consumption rates of cells in V‐79 multicellular spheroids during growth, Journal of Cellular Physiology, 118, 1, 53-61 (1984)
[40] Chaplain, M. A. J.; Lolas, G., Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system, Mathematical Models and Methods in Applied Sciences, 15, 11, 1685-1734 (2005) · Zbl 1094.92039
[41] Chaplain, M. A. J.; Lolas, G., Standard mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity, Networks and Heterogeneous Media, 1, 3, 399-439 (2006) · Zbl 1108.92023
[42] Petrovskii, S.; Morozov, A.; Li, B.-L., Regimes of biological invasion in a predator-prey system with the Allee effect, Bulletin of Mathematical Biology, 67, 3, 637-661 (2005) · Zbl 1334.92363
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.