×

zbMATH — the first resource for mathematics

LASSO-type penalization in the framework of generalized additive models for location, scale and shape. (English) Zbl 07132591
Summary: For numerous applications, it is of interest to provide full probabilistic forecasts, which are able to assign plausibilities to each predicted outcome. Therefore, attention is shifting constantly from conditional mean models to probabilistic distributional models capturing location, scale, shape and other aspects of the response distribution. One of the most established models for distributional regression is the generalized additive model for location, scale and shape (GAMLSS). In high-dimensional data set-ups, classical fitting procedures for GAMLSS often become rather unstable and methods for variable selection are desirable. Therefore, a regularization approach for high-dimensional data set-ups in the framework of GAMLSS is proposed. It is designed for linear covariate effects and is based on \(L_1\)-type penalties. The following three penalization options are provided: the conventional least absolute shrinkage and selection operator (LASSO) for metric covariates, and both group and fused LASSO for categorical predictors. The methods are investigated both for simulated data and for two real data examples, namely Munich rent data and data on extreme operational losses from the Italian bank UniCredit.
MSC:
62 Statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Basel Committee on Banking Supervision (BCBS), Basel II: International convergence of capital measurement and capital standards. A revised framework (2004), Bank of International Settlements: Bank of International Settlements Basel, Switzerland
[2] Bondell, H. D.; Reich, B. J., Simultaneous factor selection and collapsing levels in ANOVA, Biometrics, 65, 1, 169-177 (2009) · Zbl 1159.62048
[3] Chapelle, A.; Crama, Y.; Hübner, G.; Peters, J. P., Practical methods for measuring and managing operational risk in the financial sector: A clinical study, J. Bank. Financ., 32, 6, 1049-1061 (2008)
[4] Chavez-Demoulin, V.; Embrechts, P.; Hofert, M., An extreme value approach for modeling operational risk losses depending on covariates, J. Risk Insur., 83, 3, 735-776 (2016)
[5] Chernobai, A.; Jorion, P.; Yu, F., The derminants of operational risk in U.S. financial institutions, J. Financ. Quant. Anal., 46, 8, 1683-1725 (2011)
[6] Chiquet, J.; Gutierrez, P.; Rigaill, G., Fast tree inference with weighted fusion penalties, J. Comput. Graph. Statist., 26, 1, 205-216 (2017)
[7] Cope, E.; Piche, M.; Walter, J., Macroenvironmental determinants of operational loss severity, J. Bank. Financ., 36, 5, 1362-1380 (2012)
[8] Distinguin, I.; Roulet, C.; Tarazi, A., Bank regulatory capital and liquidity: Evidence from US and European Publicly traded banks, J. Bank. Financ., 37, 9, 3295-3317 (2013)
[9] Dunn, P. K.; Smyth, G. K., Randomized quantile residuals, J. Comput. Graph. Statist., 5, 236-245 (1996)
[10] Embrechts, P.; Klupperlberg, C.; Mikosch, T., Modelling Extremal Events for Insurance and Finance (1997), Springer - Verlag: Springer - Verlag Berlin · Zbl 0873.62116
[11] Gertheiss, J.; Tutz, G., Sparse modeling of categorial explanatory variables, Ann. Appl. Stat., 4, 4, 2150-2180 (2010) · Zbl 1220.62092
[13] Gneiting, T.; Balabdaoui, F.; Raftery, A. E., Probabilistic forecasts, calibration and sharpness, J. R. Stat. Soc. Ser. B Stat. Methodol., 69, 2, 243-268 (2007) · Zbl 1120.62074
[15] Hofner, B.; Mayr, A.; Schmid, M., gamboostLSS: An r package for model building and variable selection in the GAMLSS framework, J. Stat. Softw., 74, 1, 1-31 (2016)
[16] Kneib, T.; Konrath, S.; Fahrmeir, L., High dimensional structured additive regression models: Bayesian regularization, smoothing and predictive performance, J. R. Stat. Soc. Ser. C. Appl. Stat., 60, 1, 51-70 (2011)
[17] Lang, S.; Umlauf, N.; Wechselberger, P.; Harttgen, K.; Kneib, T., Multilevel structured additive regression, Stat. Comput., 24, 2, 223-238 (2014) · Zbl 1325.62179
[18] Mayr, A.; Fenske, N.; Hofner, B.; Kneib, T.; Schmid, M., Generalized additive models for location, scale and shape for high-dimensional data - A flexible approach based on boosting, J. R. Stat. Soc. Ser. C. Appl. Stat., 61, 3, 403-427 (2012)
[19] Meier, L.; Van de Geer, S.; Bühlmann, P., The group lasso for logistic regression, J. R. Stat. Soc. Ser. B Stat. Methodol., 70, 1, 53-71 (2008) · Zbl 1400.62276
[20] Oelker, M. R.; Tutz, G., A uniform framework for the combination of penalties in generalized structured models, Adv. Data Anal. Classif., 11, 1, 97-120 (2017) · Zbl 1414.62321
[21] Povel, P.; Singh, R.; Winton, A., Booms, busts, and fraud, Rev. Financ. Stud., 20, 4, 1219-1254 (2007)
[22] R Core Team, P., R: A Language and Environment for Statistical Computing (2018), R Foundation for Statistical Computing: R Foundation for Statistical Computing Vienna, Austria, ISBN 3-900051-07-0
[23] Rigby, R. A.; Stasinopoulos, D. M., Generalized additive models for location, scale and shape, J. R. Stat. Soc. C (Appl. Stat.), 54, 3, 507-554 (2005) · Zbl 05188697
[25] Schwarz, G., Estimating the dimension of a model, Ann. Statist., 6, 2, 461-464 (1978) · Zbl 0379.62005
[26] Stasinopoulos, D. M.; Rigby, R. A., Generalized additive models for location scale and shape (gamlss) in r, J. Stat. Softw., 23, 7, 1-46 (2007)
[27] Thomas, J.; Mayr, A.; Bischl, B.; Schmid, M.; Smith, A.; Hofner, B., Gradient boosting for distributional regression: Faster tuning and improved variable selection via noncyclical updates, Stat. Comput., 28, 3, 673-687 (2018) · Zbl 1384.62139
[28] Tibshirani, R., Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 58, 1, 267-288 (1996) · Zbl 0850.62538
[30] Umlauf, N.; Klein, N.; Zeileis, A.; Köhler, M.; Simon, T., bamlss: Bayesian additive models for location scale and shape (and beyond) (2018), R package version 1.0-1
[31] Valencia, F., Bank capital and uncertainty, J. Bank. Financ., 69, S1, S1-S9 (2016)
[32] Yuan, M.; Lin, Y., Model selection and estimation in regression with grouped variables, J. R. Stat. Soc. Ser. B Stat. Methodol., 68, 1, 49-67 (2006) · Zbl 1141.62030
[33] Zou, H.; Hastie, T.; Tibshirani, R., On the ‘degrees of freedom’ of the lasso, Ann. Statist., 35, 5, 2173-2192 (2007) · Zbl 1126.62061
[34] Zou, H.; Li, R., One-step sparse estimates in nonconcave penalized likelihood models, Ann. Statist., 36, 4, 1509-1533 (2008) · Zbl 1142.62027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.