×

zbMATH — the first resource for mathematics

An iterative rank penalty method for nonconvex quadratically constrained quadratic programs. (English) Zbl 1430.90454

MSC:
90C20 Quadratic programming
90C26 Nonconvex programming, global optimization
90C22 Semidefinite programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] B. Acikmese and L. Blackmore, Lossless convexification of a class of optimal control problems with non-convex control constraints, Automatica, 47 (2011), pp. 341–347. · Zbl 1207.49036
[2] F. A. Al-Khayyal, C. Larsen, and T. Van Voorhis, A relaxation method for nonconvex quadratically constrained quadratic programs, J. Global Optim., 6 (1995), pp. 215–230. · Zbl 0835.90060
[3] I. Androulakis, C. Maranas, and C. Floudas, \( \alpha\) BB: A global optimization method for general constrained nonconvex problems, J. Global Optim., 7 (1995), pp. 337–363. · Zbl 0846.90087
[4] K. M. Anstreicher, On convex relaxations for quadratically constrained quadratic programming, Math. Program., 136 (2012), pp. 233–251. · Zbl 1267.90103
[5] D. Bertsekas and A. Nedic, Convex Analysis and Optimization (Conservative), Athena Scientific, Belmont, MA, 2003. · Zbl 1140.90001
[6] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA, 1999.
[7] J. Bezdek, R. Hathaway, R. Howard, C. Wilson, and M. Windham, Local convergence analysis of a grouped variable version of coordinate descent, J. Optim. Theory Appl., 54 (1987), pp. 471–477. · Zbl 0597.90076
[8] P. Biswas, T.-C. Liang, K.-C. Toh, Y. Ye, and T.-C. Wang, Semidefinite programming approaches for sensor network localization with noisy distance measurements, IEEE Trans. Autom. Sci. Eng., 3 (2006), pp. 360–371.
[9] S. Bose, D. F. Gayme, K. M. Chandy, and S. H. Low, Quadratically constrained quadratic programs on acyclic graphs with application to power flow, IEEE Trans. Control Netw. Syst., 2 (2015), pp. 278–287. · Zbl 1370.90168
[10] S. Burer and H. Dong, Representing quadratically constrained quadratic programs as generalized copositive programs, Oper. Res. Lett., 40 (2012), pp. 203–206. · Zbl 1245.90080
[11] S. Burer and D. Vandenbussche, A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations, Math. Program., 113 (2008), pp. 259–282. · Zbl 1135.90034
[12] J.-F. Cai, E. J. Candès, and Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM J. Optim., 20 (2010), pp. 1956–1982, https://doi.org/10.1137/080738970. · Zbl 1201.90155
[13] Y. Cheng, On the gradient-projection method for solving the nonsymmetric linear complementarity problem, J. Optim. Theory Appl., 43 (1984), pp. 527–541. · Zbl 0517.90083
[14] A. R. Conn, N. I. M. Gould, and P. L. Toint, A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds, SIAM J. Numer. Anal., 28 (1991), pp. 545–572, https://doi.org/10.1137/0728030. · Zbl 0724.65067
[15] R. Dai, U. Lee, S. Hosseini, and M. Mesbahi, Optimal path planning for solar-powered UAVS based on unit quaternions, in Proceedings of the 51st Annual IEEE Conference on Decision and Control, 2012, pp. 3104–3109.
[16] R. Dai and C. Sun, Path planning of spatial rigid motion with constrained attitude, J. Guid. Control Dyn., 38 (2015), pp. 1356–1365.
[17] A. d’Aspremont and S. Boyd, Relaxations and Randomized Methods for Nonconvex QCQPs, EE392o Class Notes, Stanford University, Stanford, CA, 2003.
[18] J. Dattorro, Convex Optimization & Euclidean Distance Geometry, Meboo Publishing, Palo Alto, CA, 2015. · Zbl 1142.15014
[19] M. Diehl, Formulation of closed-loop min-max MPC as a quadratically constrained quadratic program, IEEE Trans. Automat. Control, 52 (2007), pp. 339–343. · Zbl 1366.90154
[20] E. Elhamifar and R. Vidal, Block-sparse recovery via convex optimization, IEEE Trans. Signal Process., 60 (2012), pp. 4094–4107. · Zbl 1393.94681
[21] H. C. Elman and G. H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal., 31 (1994), pp. 1645–1661, https://doi.org/10.1137/0731085. · Zbl 0815.65041
[22] M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value Problems, Elsevier, Amsterdam, 2000. · Zbl 0525.65045
[23] K. Holmström, TOMLAB—An environment for solving optimization problems in MATLAB, in Proceedings for the Nordic MATLAB Conference’97, 1997.
[24] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 2012.
[25] Y. Kim, M. Mesbahi, G. Singh, and F. Y. Hadaegh, On the convex parameterization of constrained spacecraft reorientation, IEEE Trans. Aerosp. Electron. Syst., 46 (2010), pp. 1097–1109.
[26] J. B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J. Optim., 11 (2001), pp. 796–817, https://doi.org/10.1137/S1052623400366802. · Zbl 1010.90061
[27] Z.-q. Luo, W.-k. Ma, A.-C. So, Y. Ye, and S. Zhang, Semidefinite relaxation of quadratic optimization problems, IEEE Signal Process. Mag., 27 (2010), pp. 20–34.
[28] S. Narasimhan and R. Rengaswamy, Plant friendly input design: Convex relaxation and quality, IEEE Trans. Automat. Control, 56 (2011), pp. 1467–1472. · Zbl 1368.93023
[29] A. Qualizza, P. Belotti, and F. Margot, Linear Programming Relaxations of Quadratically Constrained Quadratic Programs, Springer, New York, 2012. · Zbl 1242.90155
[30] D. P. Rutenberg and T. L. Shaftel, Product design: Subassemblies for multiple markets, Manag. Sci., 18 (1971), pp. B220–B231.
[31] S. Sojoudi and J. Lavaei, Exactness of semidefinite relaxations for nonlinear optimization problems with underlying graph structure, SIAM J. Optim., 24 (2014), pp. 1746–1778, https://doi.org/10.1137/130915261. · Zbl 1327.90221
[32] G. W. Stewart, Introduction to Matrix Computations, Elsevier, New York, London, 1973. · Zbl 0302.65021
[33] J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimiz. Methods Softw., 11 (1999), pp. 625–653. · Zbl 0973.90526
[34] C. Sun and R. Dai, Spacecraft attitude control under constrained zones via quadratically constrained quadratic programming, in AIAA Guidance, Navigation, and Control Conference, 2015.
[35] K.-C. Toh, M. J. Todd, and R. H. Tütüncü, SDPT3—a MATLAB software package for semidefinite programming, version 1.3, Optim. Methods Softw., 11 (1999), pp. 545–581. · Zbl 0997.90060
[36] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev., 38 (1996), pp. 49–95, https://doi.org/10.1137/1038003.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.