Homogenization theory for the random conductance model with degenerate ergodic weights and unbounded-range jumps. (English. French summary) Zbl 1442.60071

Summary: We study homogenization properties of the discrete Laplace operator with random conductances on a large domain in \(\mathbb{Z}^d \). More precisely, we prove almost-sure homogenization of the discrete Poisson equation and of the top of the Dirichlet spectrum.
We assume that the conductances are stationary, ergodic and nearest-neighbor conductances are positive. In contrast to earlier results, we do not require uniform ellipticity but certain integrability conditions on the lower and upper tails of the conductances. We further allow jumps of arbitrary length.
Without the long-range connections, the integrability condition on the lower tail is optimal for spectral homogenization. It coincides with a necessary condition for the validity of a local central limit theorem for the random walk among random conductances. As an application of spectral homogenization, we prove a quenched large deviation principle for the normalized and rescaled local times of the random walk in a growing box.
Our proofs are based on a compactness result for the Laplacian’s Dirichlet energy, Poincaré inequalities, Moser iteration and two-scale convergence.


60H25 Random operators and equations (aspects of stochastic analysis)
60K37 Processes in random environments
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35R60 PDEs with randomness, stochastic partial differential equations
47B80 Random linear operators
47A75 Eigenvalue problems for linear operators
Full Text: DOI arXiv Euclid


[1] S. Andres, J.-D. Deuschel and M. Slowik. Invariance principle for the random conductance model in a degenerate ergodic environment. Ann. Probab.43 (4) (2015) 1866-1891. · Zbl 1325.60037 · doi:10.1214/14-AOP921
[2] S. Andres, J.-D. Deuschel and M. Slowik. Harnack inequalities on weighted graphs and some applications to the random conductance model. Probab. Theory Related Fields164 (3-4) (2016) 931-977. · Zbl 1336.31021 · doi:10.1007/s00440-015-0623-y
[3] G. Allaire. Homogenization and two-scale convergence. SIAM J. Math. Anal.23 (6) (1992) 1482-1518. · Zbl 0770.35005 · doi:10.1137/0523084
[4] D. Boivin and J. Depauw. Spectral homogenization of reversible random walks on \(\mathbb{Z}^d\) in a random environment. Stochastic Process. Appl.104 (1) (2003) 29-56. · Zbl 1075.35507 · doi:10.1016/S0304-4149(02)00233-8
[5] M. Biskup, R. Fukushima and W. König. Eigenvalue fluctuations for lattice Anderson Hamiltonians. SIAM J. Math. Anal.48 (4) (2016) 2674-2700. · Zbl 1345.60058 · doi:10.1137/14097389X
[6] M. Biskup, R. Fukushima and W. König. Eigenvalue fluctuations for lattice Anderson Hamiltonians: Unbounded potentials. Interdiscip. Inform. Sci.25 (1) (2018) 59-76. · Zbl 1482.35147
[7] J.-P. Bouchaud and A. Georges. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep.195 (4-5) (1990) 127-293.
[8] M. Biskup. Recent progress on the random conductance model. Probab. Surv.8 (2011) 294-373. · Zbl 1245.60098 · doi:10.1214/11-PS190
[9] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York, 2011. · Zbl 1220.46002
[10] T. Coulhon. Espaces de Lipschitz et inégalités de Poincaré. J. Funct. Anal.136 (1) (1996) 81-113. · Zbl 0859.58009
[11] J.-D. Deuschel, T. A. Nguyen and M. Slowik. Quenched invariance principles for the random conductance model on a random graph with degenerate ergodic weights. Probab. Theory Related Fields170 (1-2) (2018) 363-386. · Zbl 1405.60152 · doi:10.1007/s00440-017-0759-z
[12] M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov process expectations for large time, I. Comm. Pure Appl. Math.28 (1975) 1-47. · Zbl 0323.60069 · doi:10.1002/cpa.3160280102
[13] L. C. Evans. Partial Differential Equations, 2nd edition. Graduate Studies in Mathematics19. American Mathematical Society, Providence, RI, 2010. · Zbl 1194.35001
[14] A. Faggionato. Random walks and exclusion processes among random conductances on random infinite clusters: Homogenization and hydrodynamic limit. Electron. J. Probab.13 (73) (2008) 2217-2247. · Zbl 1189.60172 · doi:10.1214/EJP.v13-591
[15] A. Faggionato. Spectral analysis of 1D nearest-neighbor random walks and applications to subdiffusive trap and barrier models. Electron. J. Probab.17 (15) (2012) 36pp. · Zbl 1248.60105 · doi:10.1214/EJP.v17-1831
[16] F. Flegel. Localization of the principal Dirichlet eigenvector in the heavy-tailed random conductance model. Electron. J. Probab.23 (68) (2018) 43pp. · Zbl 06924680 · doi:10.1214/18-EJP160
[17] N. Gantert, W. König and Z. Shi. Annealed deviations of random walk in random scenery. Ann. Inst. Henri Poincaré Probab. Stat.43 (1) (2007) 47-76. · Zbl 1119.60083
[18] A. Giunti and J.-C. Mourrat. Quantitative homogenization of degenerate random environments. Ann. Inst. Henri Poincaré Probab. Stat.54 (1) (2018) 22-50. · Zbl 1406.35033 · doi:10.1214/16-AIHP793
[19] V. V. Jikov, S. M. Kozlov and O. A. Oleĭnik. Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin, 1994. · Zbl 0838.35001
[20] H. Kesten. Aspects of first passage percolation. In École D’été de Probabilités de Saint-Flour, XIV - 1984 125-264. Lecture Notes in Math.1180. Springer, Berlin, 1986. · Zbl 0602.60098
[21] W. König and T. Wolff. Large deviations for the local times of a random walk among random conductances in a growing box. Markov Process. Related Fields21 (3) (2015) 591-638.
[22] T.-W. Ma. Banach-Hilbert Spaces, Vector Measures and Group Representations. World Scientific Publishing Co., Inc., River Edge, NJ, 2002. · Zbl 1012.46001
[23] G. Dal Maso. An Introduction to \(\Gamma \)-Convergence. Progress in Nonlinear Differential Equations and Their Applications8. Birkhäuser Boston, Inc., Boston, MA, 1993. · Zbl 0816.49001
[24] P. Mathieu and A. Piatnitski. Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.463 (2085) (2007) 2287-2307. · Zbl 1131.82012 · doi:10.1098/rspa.2007.1876
[25] S. Neukamm, M. Schäffner and A. Schlömerkemper. Stochastic homogenization of nonconvex discrete energies with degenerate growth. SIAM J. Math. Anal.49 (3) (2017) 1761-1809. · Zbl 1362.74028
[26] G. Nguetseng. A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal.20 (3) (1989) 608-623. · Zbl 0688.35007 · doi:10.1137/0520043
[27] A. Piatnitski and E. Zhizhina. Periodic homogenization of nonlocal operators with a convolution-type kernel. SIAM J. Math. Anal.49 (1) (2017) 64-81. · Zbl 1356.45003 · doi:10.1137/16M1072292
[28] L. Saloff-Coste. Lectures on finite Markov chains. In Lectures on Probability Theory and Statistics 301-413. Saint-Flour, 1996. Lecture Notes in Math.1665. Springer, Berlin, 1997. · Zbl 0885.60061
[29] E. Seneta. Non-negative Matrices and Markov Chains. Springer Series in Statistics. Springer, New York, 2006. Revised reprint of the second (1981) edition. · Zbl 1099.60004
[30] V. V. Zhikov and A. L. Pyatnitskiĭ. Homogenization of random singular structures and random measures. Izv. Ross. Akad. Nauk Ser. Mat.70 (1) (2006) 23-74. · Zbl 1113.35021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.