×

zbMATH — the first resource for mathematics

Numerical and experimental investigation of oblique shock wave reflection off a water wedge. (English) Zbl 1430.76359
Summary: Shock wave interaction with solid wedges has been an area of much research in past decades, but so far very few results have been obtained for shock wave reflection off liquid wedges. In this study, numerical simulations are performed using the inviscid Euler equations and the stiffened gas equation of state to study the transition angles, reflection patterns and triple point trajectory angles of shock reflection off solid and water wedges. Experiments using an inclined shock tube are also performed and schlieren photography results are compared to simulations. Results show that the transition angles for the water wedge cases are within 5.3 % and 9.2 %, for simulations and experiments respectively, compared to results obtained with the theoretical detachment criterion for solid surfaces. Triple point trajectory angles are measured and compared with analytic solutions, agreement within \(1.3^\circ\) is shown for the water wedge cases. The transmitted wave in the water observed in the simulation is quantitatively studied, and two different scenarios are found. For low incident shock Mach numbers, \(M_s=1.2\) and 2, no shock wave is formed in the water but a precursor wave is induced ahead of the incident shock wave and passes the information from the water back into the air. For high incident shock Mach numbers, \(M_s=3\) and 4, precursor waves no longer appear but instead a shock wave is formed in the water and attached to the Mach stem at every instant. The temperature field in the water is measured in the simulation. For strong incident shock waves, e.g. \(M_s=4\), the temperature increment in the water is up to 7.3 K.

MSC:
76L05 Shock waves and blast waves in fluid mechanics
76N15 Gas dynamics (general theory)
76-05 Experimental work for problems pertaining to fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
Software:
VTF
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abgrall, R. & Karni, S.2001Computations of compressible multifluids. J. Comput. Phys.169, 594-623. · Zbl 1033.76029
[2] Baskar, S., Coulouvrat, F. & Marchiano, R.2007Nonlinear reflection of grazing acoustic shock waves: unsteady transition from von Neumann to Mach to Snell-Descartes reflections. J. Fluid Mech.575, 27-55. · Zbl 1147.76589
[3] Ben-Dor, G.1978 Regions and transitions of non-stationary oblique shock wave diffractions in perfect and imperfect gases. UTIAS Rep. 232.
[4] Ben-Dor, G.1980Analytical solution of double-Mach reflection. AIAA J.18 (9), 1036-1043. · Zbl 0462.76066
[5] Ben-Dor, G.1981Relation between first and second triple-point trajectory angles in double-Mach reflection. AIAA J.19 (4), 531-533.
[6] Ben-Dor, G.2007Shock Wave Reflection Phenomena. Springer. · Zbl 1146.76001
[7] Ben-Dor, G. & Glass, I. I.1979Domains and boundaries of non-stationary oblique shock-wave reflexions. 1. Diatomic gas. J. Fluid Mech.92, 459-496.
[8] Ben-Dor, G. & Glass, I. I.1980Domains and boundaries of non-stationary oblique shock-wave reflexions. 2. Monatomic gas. J. Fluid Mech.96, 735-756.
[9] Ben-Dor, G., Mazor, G., Takayama, K. & Igra, O.1987Influence of surface roughness on the transition from regular to Mach reflection in pseudo-steady flows. J. Fluid Mech.176, 333-356.
[10] Ben-Dor, G. & Takayama, K.1992The phenomena of shock wave reflection – a review of unsolved problems and future research needs. Shock Waves2, 211-223. · Zbl 0825.76403
[11] Birkhoff, G.1950Hydrodynamics, A Study in Logic, Fact and Similitude. Princeton University Press. · Zbl 0041.53903
[12] Bleakney, W., Weimer, D. K. & Fletcher, C. H.1949The shock tube: a facility for investigations in fluid dynamics. Rev. Sci. Instrum.20, 807-815.
[13] Borisov, A. A., Kogarko, S. M. & Lyubimov, A. V.1965Sliding of detonation and shock waves over liquid surfaces. Combust. Explos. Shock Waves1, 19-23.
[14] Cirak, F., Deiterding, R. & Mauch, S. P.2007Large-scale fluid–structure interaction simulation of viscoplastic and fracturing thin shells subjected to shocks and detonations. Comput. Struct.85, 1049-1065.
[15] Cole, R. H.1948Underwater Explosions. Dover.
[16] Colella, P. & Henderson, L. F.1990The von Neumann paradox for the diffraction of weak shock waves. J. Fluid Mech.213, 71-94.
[17] Deiterding, R.2009A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex domains. Comput. Struct.87, 769-783.
[18] Deiterding, R.2011Block-structured adaptive mesh refinement-theory, implementation and application. ESAIM: Proc.34, 97-150. · Zbl 1302.65220
[19] Deiterding, R., Cirak, F. & Mauch, S. P.2009Efficient fluid–structure interaction simulation of viscoplastic and fracturing thin-shells subjected to underwater shock loading. In International Workshop on Fluid-Structure Interaction (ed. S.Hartmann, A.Meister, M.Schäfer & S.Turek), Theory, Numerics and Applications, Herrsching am Ammersee, pp. 65-80. Kassel University Press GmbH.
[20] Deiterding, R., Radovitzky, R., Mauch, S. P., Noels, L., Cummings, J. C. & Meiron, D. I.2006A virtual test facility for the efficient simulation of solid material response under strong shock and detonation wave loading. Engng Comput.22 (3-4), 325-347.
[21] Delpino Gonzales, O. & Eliasson, V.2015Effect of water content on dynamic fracture. Initiation of vinyl ester. Exp. Mech.56, 637-644.
[22] Desjouy, C., Ollivier, S., Marsden, O., Karzova, M. & Blanc-Benon, P.2016Irregular reflection of weak acoustic shock pulses on rigid boundaries: schlieren experiments and direct numerical simulation based on a Navier-Stokes solver. Phys. Fluids.28, 027102.
[23] Flåtten, T., Morin, A. & Munkefjord, S. T.2011On solutions to equilibrium problems for systems of stiffened gases. SIAM J. Appl. Maths71 (1), 41-67.
[24] Fox, R. W., McDonald, A. T. & Pritchard, P. J.1985Introduction to Fluid Mechanics. Wiley.
[25] Geva, M., Ram, O. & Sadot, O.2013The non-stationary hysteresis phenomenon in shock wave reflections. J. Fluid Mech.732, R1. · Zbl 1294.76016
[26] Grove, J. W. & Menikoff, R.1990Anomalous reflection of a shock wave at a fluid interface. J. Fluid Mech.219, 313-336.
[27] Henderson, L. F., Ma, J., Sakurai, A. & Takayama, K.1990Refraction of a shock wave at an air–water interface. Fluid Dyn. Res.5, 337-350.
[28] Hornung, H. G., Oertel, H. & Sandeman, R. J.1979Transition to Mach reflexion of shock waves in steady and pseudosteady flow with and without relaxation. J. Fluid Mech.90, 541-560.
[29] Hornung, H. G. & Robinson, M. L.1982Transition from regular to Mach reflection of shock waves. Part 2. The steady-flow criterion. J. Fluid Mech.123, 155-164.
[30] Hornung, H. G. & Taylor, J. R.1982Transition from regular to Mach reflection of shock waves. Part 1. The effect of viscosity in the pseudo-steady case. J. Fluid Mech.123, 143-153.
[31] Igra, D. & Takayama, K.2001Numerical simulation of shock wave interaction with a water column. Shock Waves11, 219-228. · Zbl 1051.76045
[32] Igra, D. & Takayama, K.2001Investigation of aerodynamic breakup of a cylindrical water droplet. Atomiz. Sprays11, 167-185.
[33] Jeon, H., Gross, J. R., Estabrook, S., Koumlis, S., Wan, Q., Khanolkar, G. R., Tao, X., Mensching, D. M., Lesnick, E. J. & Eliasson, V.2015Shock wave attenuation using foam obstacles: does geometry matter?Aerosp.2, 353-375.
[34] Jolgam, S., Ballil, A., Nowakowski, A. & Nicolleau, F.2012On equations of state for simulations of multiphase flows. In Proceedings of the World Congress on Engineering, vol. III. International Association of Engineers.
[35] Karzova, M. M., Khokhlova, V. A., Salze, E., Ollivier, S. & Blanc-Benon, P.2015Mach stem formation in reflection and focusing of weak shock acoustic pulses. J. Acoust. Soc. Am.137, EL436-EL442.
[36] Kedrinskii, V. K.2005Hydrodynamics of Explosion: Experiments and Models. Springer.
[37] Kleine, H., Timofeev, E., Hakkaki-Fard, A. & Sadot, O.2014The influence of Reynolds number on the triple point trajectories at shock reflection off cylindrical surfaces. J. Fluid Mech.740, 47-60.
[38] Law, C. K.1970 Diffraction of strong shock waves by a sharp compressive corner. UTIAS Tech. Note 150.
[39] LeVeque, R. J.2002Finite Volume Methods for Hyperbolic Problems. Cambridge University Press. · Zbl 1010.65040
[40] Li, H. & Ben-Dor, G.1995Reconsideration of pseudo-steady shock wave reflections and the transition criteria between them. Shock Waves5, 59-73. · Zbl 0844.76041
[41] Mach, E.1878Über den Verlauf von Funkenwellen in der Ebene und im Räume. Sitz.ber. Akad. Wiss. Wien78, 819-838.
[42] Marchiano, R., Coulouvrat, F., Baskar, S. & Thomas, J. L.2007Experimental evidence of deviation from mirror reflection for acoustical shock waves. Phys. Rev. E76, 056602.
[43] Meng, J. C. & Colonius, T.2015Numerical simulation of the early stages of high-speed droplet breakup. Shock Waves25, 399-414.
[44] Mouton, C. A.2006 Transition between regular reflection and Mach reflection in the dual-solution domain. PhD thesis, California Institute of Technology.
[45] Naidoo, K. & Skews, B. W.2011Dynamic effects on the transition between two-dimensional regular and Mach reflection of shock waves in an ideal, steady supersonic free stream. J. Fluid Mech.676, 432-460. · Zbl 1241.76317
[46] von Neumann, J.1943a Oblique reflection of shocks. Explos. Res. Rep. 12, Navy Dept., Bureau of Ordinance, Washington, DC, USA.
[47] von Neumann, J.1943b Refraction, intersection and reflection of shock waves. NAVORD Rep. 203-45, Navy Dept., Bureau of Ordinance, Washington, DC, USA.
[48] Onodera, H. & Takayama, K.1990Interaction of a plane shock wave with slitted wedges. Exp. Fluids10, 109-115.
[49] Perotti, L. E., Deiterding, R., Inaba, K., Shepherd, J. & Ortiz, M.2013Elastic response of water-filled fiber composite tubes under shock wave loading. Intl J. Solids Struct.50, 473-486.
[50] Ram, O., Geva, M. & Sadot, O.2015High spatial and temporal resolution study of shock wave reflection over a coupled convex–concave cylindrical surface. J. Fluid Mech.768, 219-239.
[51] Ridah, S.1988Shock waves in water. J. Appl. Phys.64, 152-158.
[52] Rodriguez, V., Jourdan, G., Marty, A., Allou, A. & Parisse, J. D.2016Planar shock wave sliding over a water layer. Exp. Fluids57 (8), 125.
[53] Sakurai, A.1974Blast wave from a plane source at an interface. J. Phys. Soc. Japan36, 610-610. · Zbl 0116.43201
[54] Sasoh, A., Takayama, K. & Saito, T.1992A weak shock wave reflection over wedges. Shock Waves2, 277-281.
[55] Saurel, R. & Abgrall, R.1999A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys.150, 425-467. · Zbl 0937.76053
[56] Settles, G. S.2012Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media. Springer.
[57] Shyue, K.-M.1998An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys.142, 208-242. · Zbl 0934.76062
[58] Shyue, K.-M.1999A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state. J. Comput. Phys.156, 43-88. · Zbl 0957.76039
[59] Shyue, K.-M.2006A volume-fraction based algorithm for hybrid barotropic and non-barotropic two-fluid flow problems. Shock Waves15, 407-423. · Zbl 1195.76269
[60] Skews, B.2005Shock wave interaction with porous plates. Exp. Fluids39, 875-884.
[61] Skews, B. W. & Blitterswijk, A.2011Shock wave reflection off coupled surfaces. Shock Waves21, 491-498.
[62] Skews, B. W. & Kleine, H.2010Shock wave interaction with convex circular cylindrical surfaces. J. Fluid Mech.654, 195-205. · Zbl 1193.76017
[63] Soni, V., Hadjadj, A., Chaudhuri, A. & Ben-Dor, G.2017Shock-wave reflections over double-concave cylindrical reflectors. J. Fluid Mech.813, 70-84. · Zbl 1383.76325
[64] Takayama, K. & Ben-Dor, G.1989Pseudo-steady oblique shock wave reflections over water wedges. Exp. Fluids8, 129-136.
[65] Teodorczyk, A. & Shepherd, J. E.2012 Interaction of a shock wave with a water layer. Tech. Rep. FM2012-002. Graduate Aeronautical Laboratories, California Institute of Technology.
[66] Toro, E. F., Spruce, M. & Speares, W.1994Restoration of the contact surface in the HLL-Riemann solver. Shock Waves4, 25-34. · Zbl 0811.76053
[67] Versluis, M.2013High-speed imaging in fluids. Exp. Fluids54, 1458.
[68] Wang, C. & Eliasson, V.2012Shock wave focusing in water inside convergent structures. Intl J. Multiphys.6, 267-282.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.