×

zbMATH — the first resource for mathematics

The local discontinuous Galerkin method for convection-diffusion-fractional anti-diffusion equations. (English) Zbl 1447.65070
Summary: In this paper, we consider the discontinuous Galerkin method for solving time dependent partial differential equations with convection-diffusion terms and anti-diffusive fractional operator of order \(\alpha \in(1, 2)\). These equations are motivated by two distinct applications: a dune morphodynamics model and a signal filtering model. The key to study these numerical schemes is to split the anti-diffusive operators into a singular and non-singular integral representations. The problem is then expressed as a system of low order differential equations and a local discontinuous Galerkin method is proposed for these equations. We prove nonlinear stability estimates and optimal order of convergence \(\mathcal{O}({\Delta} x^{k + 1})\) for linear equations and an order of convergence of \(\mathcal{O}({\Delta} x^{k + \frac{1}{2}})\) for the nonlinear problem. Finally numerical experiments are given to illustrate qualitative behaviors of solutions for both applications and to confirme our convergence results.

MSC:
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
Software:
FODE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aboelenen, T.; El-Hawary, H. M., A high-order nodal discontinuous Galerkin method for a linearized fractional Cahn-Hilliard equation, Comput. Math. Appl., 73 (2017) · Zbl 1412.65132
[2] Ahmadinia, M.; Safari, Z.; Fouladi, S., Analysis of local discontinuous Galerkin method for time–space fractional convection–diffusion equations, BIT Numer. Math. (2018) · Zbl 1398.65243
[3] Alibaud, N.; Azerad, P.; Isèbe, D., A non-monotone nonlocal conservation law for dune morphodynamics, Differ. Integral Equ., 23 (2010) · Zbl 1240.86010
[4] Azerad, P.; Bouharguane, A.; Crouzet, J.-F., Simultaneous denoising and enhancement of signals by a fractal conservation law, Commun. Nonlinear Sci. Numer. Simul., 17 (2012) · Zbl 1246.60062
[5] Betancourt, F.; Burger, R.; Karlsen, K. H.; Tory, E. M., On nonlocal conservation laws modelling sedimentation, Nonlinearity, 24 (2011) · Zbl 1381.76368
[6] Blandin, S.; Goatin, P., Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., 132 (2016) · Zbl 1336.65130
[7] Bouharguane, A., Finite element method for a space-fractional anti-diffusive equation, J. Comput. Appl. Math. (2017)
[8] Bouharguane, A.; Carles, R., Splitting methods for the nonlocal Fowler equation, Math. Comput., 83 (2014) · Zbl 1286.65109
[9] Bueno-Orovio, A.; Kay, D.; Burrage, K., Fourier spectral methods for fractional-in-space reaction-diffusion equations, BIT Numer. Math., 54 (2014) · Zbl 1306.65265
[10] Cifani, S.; Jakobsen, E. R.; Karlsen, K. H., The discontinuous Galerkin method for fractional degenerate convection-diffusion equations, BIT Numer. Math., 51 (2011) · Zbl 1247.65128
[11] Cockburn, B.; Mustapha, K., A hybridizable discontinuous Galerkin method for fractional diffusion problems, Numer. Math., 130 (2015) · Zbl 1329.26013
[12] Cockburn, B.; Shu, C.-W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998)
[13] Cockburn, B.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16 (2001) · Zbl 1065.76135
[14] Deng, W., Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47 (2009) · Zbl 1416.65344
[15] Deng, W. H.; Hesthaven, J. S., Local discontinuous Galerkin methods for fractional diffusion equations, ESAIM: M2AN, 47 (2013) · Zbl 1282.35400
[16] Droniou, J., A numerical method for fractal conservation laws, Math. Comput., 79 (2010) · Zbl 1201.65163
[17] Fowler, A. C., Dunes and drumlins, Geomorphol. Fluid Mech., 211 (2001) · Zbl 1169.86305
[18] Kouakou, K. K.J.; Lagrée, P.-Y., Stability of an erodible bed in various shear flows, Eur. Phys. J. B, 47 (2005)
[19] Li, Can; Zhao, Shan, Efficient numerical schemes for fractional water wave models, Comput. Math. Appl., 71 (2016)
[20] Li, M.; Huang, C.; Wang, N., Galerkin finite element method for the nonlinear fractional Ginzburg-Landau equation, Appl. Numer. Math., 118 (2017)
[21] Matache, A.; Schwab, C.; Wihler, T., Fast numerical solution of parabolic integrodifferential equations with applications in finance, SIAM J. Sci. Comput., 27 (2005)
[22] Meerschaert, M.; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172 (2004) · Zbl 1126.76346
[23] Mustapha, K.; McLean, W., Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations, SIAM J. Numer. Anal., 51 (2013) · Zbl 1267.26005
[24] Safari, F.; Chen, W., Coupling of the improved singular boundary method and dual reciprocity method for multi-term time-fractional mixed diffusion-wave equations, Comput. Math. Appl. (2019)
[25] Shen, J., On a new pseudocompressibility method for the incompressible Navier-Stokes equations, Appl. Numer. Math., 21 (1996) · Zbl 0853.76052
[26] Vong, S.; Luy, P., On a second order scheme for space fractional diffusion equations with variable coefficients, Appl. Numer. Math., 137 (2019)
[27] Xu, Q.; Hesthaven, J. S., Discontinuous Galerkin method for fractional convection-diffusion equations, SIAM J. Numer. Anal., 52 (2014) · Zbl 1297.26018
[28] Xu, Y.; Shu, C.-W., Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection diffusion and KdV equations, Comput. Methods Appl. Mech. Eng., 196 (2007)
[29] Yan, J.; Shu, C.-W., Local discontinuous Galerkin methods for partial differential equations with higher order derivatives, J. Sci. Comput., 17 (2002)
[30] Zhang, Q.; Shu, C.-W., Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws, SIAM J. Numer. Anal., 42 (2004) · Zbl 1078.65080
[31] Zheng, Y.; Li, C.; Zhao, Z., A note on the finite element method for the space-fractional advection diffusion equation, Comput. Math. Appl., 59 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.