Non-rigid registration under anisotropic deformations. (English) Zbl 07137396

Summary: Non-rigid registration of deformed 3D shapes is a challenging and fundamental task in geometric processing, which aims to non-rigidly deform a source shape into alignment with a target shape. Current state-of-the-art methods assume deformations to be near-isometric. This assumption does not reflect real-world conditions, for example in large-scale deformation, where moderate anisotropic deformations (e.g., stretches) are common. In this paper we propose two significant changes to a typical registration pipeline to address such challenging deformations. First, we introduce a method to estimate anisotropic non-isometric deformations and incorporate this into an iterative non-rigid registration pipeline. Second, we compute additional correspondences in non-isometrically deforming regions using reliable correspondences as landmarks and prune inconsistent correspondences. We compare the performance of our proposed algorithm to several state-of-the-art methods using existing benchmarks. Experimental results show that our method outperforms existing methods.


65Dxx Numerical approximation and computational geometry (primarily algorithms)


Metro; 3DMatch; SMPL
Full Text: DOI


[1] Achenbach, J.; Zell, E.; Botsch, M., Accurate face reconstruction through anisotropic fitting and eye correction, (Vision, Modeling & Visualization, the Eurographics Association (2015)), 1-8
[2] Allen, B.; Curless, B.; Popović, Z., Articulated body deformation from range scan data, ACM Trans. Graph., 21, 612-619 (2002)
[3] Amberg, B.; Romdhani, S.; Vetter, T., Optimal step nonrigid ICP algorithms for surface registration, (Proc. CVPR (2007)), 1-8
[4] Attene, M., A lightweight approach to repairing digitized polygon meshes, Vis. Comput., 26, 1393-1406 (2010)
[5] Besl, P. J.; McKay, N. D., A method for registration of 3-d shapes, IEEE Trans. Pattern Anal. Mach. Intell., 14, 239-256 (1992)
[6] Bogo, F.; Romero, J.; Loper, M.; Black, M. J., FAUST: dataset and evaluation for 3D mesh registration, (Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2014), IEEE), 3794-3801
[7] Bouaziz, S.; Pauly, M., Dynamic 2D/3D registration for the kinect, (ACM SIGGRAPH 2013 Courses (2013), ACM), Article 21 pp.
[8] Bouaziz, S.; Wang, Y.; Pauly, M., Online modeling for realtime facial animation, ACM Trans. Graph., 32, Article 40 pp. (2013) · Zbl 1305.68211
[9] Bronstein, A.; Bronstein, M.; Kimmel, R., Numerical Geometry of Non-Rigid Shapes (2008), Springer Publishing Company, Incorporated · Zbl 1178.68608
[10] Brown, B. J.; Rusinkiewicz, S., Non-rigid range-scan alignment using thin-plate splines, (Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission. Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 3DPVT 2004 (2004)), 759-765
[11] Chen, S. Y.; Gao, L.; Lai, Y. K.; Xia, S., Rigidity controllable as-rigid-as-possible shape deformation, Graph. Models, 91, 13-21 (2017)
[12] Chen, Y.; Medioni, G., Object modelling by registration of multiple range images, Image Vis. Comput., 10, 145-155 (1992)
[13] Cignoni, P.; Rocchini, C.; Scopigno, R., Metro: measuring error on simplified surfaces, (Computer Graphics Forum (1998)), 167-174
[14] Cosmo, L.; Rodolà, E.; Bronstein, M. M.; Torsello, A.; Cremers, D.; Sahillioğlu, Y., Partial matching of deformable shapes, (Proceedings of the Eurographics 2016 Workshop on 3D Object Retrieval (2016)), 61-67
[15] Euler, L., Recherches sur la courbure des surfaces, Mém. Acad. Sci. Berlin, 16, 9 (1760)
[16] Frome, A.; Huber, D.; Kolluri, R.; Bülow, T.; Malik, J., Recognizing Objects in Range Data Using Regional Point Descriptors, 224-237 (2004), Springer Berlin Heidelberg · Zbl 1098.68766
[17] Gao, L.; Lai, Y. K.; Liang, D.; Chen, S. Y.; Xia, S., Efficient and flexible deformation representation for data-driven surface modeling, ACM Trans. Graph., 35, Article 157 pp. (2016)
[18] Garland, M.; Heckbert, P. S., Surface simplification using quadric error metrics, (Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (1997), ACM Press/Addison-Wesley Publishing Co.), 209-216
[19] Guo, Y.; Bennamoun, M.; Sohel, F.; Lu, M.; Wan, J.; Kwok, N. M., A comprehensive performance evaluation of 3D local feature descriptors, Int. J. Comput. Vis., 116, 66-89 (2016)
[20] Hirshberg, D. A.; Loper, M.; Rachlin, E.; Black, M. J., Coregistration: simultaneous alignment and modeling of articulated 3D shape, (Proc. ECCV (2012)), 242-255
[21] Huang, Q. X.; Adams, B.; Wicke, M.; Guibas, L. J., Non-rigid registration under isometric deformations, Comput. Graph. Forum, 27, 1449-1457 (2008)
[22] Huang, Q.; Wang, F.; Guibas, L., Functional map networks for analyzing and exploring large shape collections, ACM Trans. Graph., 33, Article 36 pp. (2014) · Zbl 1396.65046
[23] Johnson, A. E.; Hebert, M., Using spin images for efficient object recognition in cluttered 3D scenes, IEEE Trans. Pattern Anal. Mach. Intell., 21, 433-449 (1999)
[24] Kilian, M.; Mitra, N. J.; Pottmann, H., Geometric modeling in shape space, (ACM SIGGRAPH 2007 Papers (2007), ACM), 1-8
[25] Kim, V. G.; Lipman, Y.; Funkhouser, T., Blended intrinsic maps, ACM Trans. Graph., 30, Article 79 pp. (2011)
[26] Kovnatsky, A.; Bronstein, M. M.; Bresson, X.; Vandergheynst, P., Functional correspondence by matrix completion, (IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)), 905-914
[27] Kovnatsky, A.; Bronstein, M. M.; Bronstein, A. M.; Glashoff, K.; Kimmel, R., Coupled quasi-harmonic bases, Comput. Graph. Forum, 32, 439-448 (2013)
[28] Lähner, Z.; Vestner, M.; Boyarski, A.; Litany, O.; Slossberg, R.; Remez, T.; Rodolà, E.; Bronstein, A. M.; Bronstein, M. M.; Kimmel, R.; Cremers, D., Efficient deformable shape correspondence via kernel matching (2017)
[29] Leordeanu, M.; Hebert, M., A spectral technique for correspondence problems using pairwise constraints, (Proc. ICCV, vol. 2 (2005)), 1482-1489
[30] Li, H.; Adams, B.; Guibas, L. J.; Pauly, M., Robust single-view geometry and motion reconstruction, ACM Trans. Graph., 28, Article 175 pp. (2009)
[31] Li, K.; Yang, J.; Lai, Y.; Guo, D., Robust non-rigid registration with reweighted position and transformation sparsity, IEEE Trans. Vis. Comput. Graph. (2018)
[32] Litany, O.; Remez, T.; Rodolà, E.; Bronstein, A.; Bronstein, M., Deep functional maps: structured prediction for dense shape correspondence, (2017 IEEE International Conference on Computer Vision (ICCV) (2017)), 5660-5668
[33] Litany, O.; Rodolà, E.; Bronstein, A. M.; Bronstein, M. M., Fully spectral partial shape matching, Comput. Graph. Forum (2017)
[34] Liu, B.; Chen, S.; Xin, S. Q.; He, Y.; Liu, Z.; Zhao, J., An optimization-driven approach for computing geodesic paths on triangle meshes, Comput. Aided Des., 90, 105-112 (2017)
[35] Loper, M.; Mahmood, N.; Romero, J.; Pons-Moll, G.; Black, M. J., SMPL: a skinned multi-person linear model, ACM Trans. Graph., 34, Article 248 pp. (2015)
[36] Monti, F.; Boscaini, D.; Masci, J.; Rodolà, E.; Svoboda, J.; Bronstein, M. M., Geometric deep learning on graphs and manifolds using mixture model CNNs, (Proc. CVPR (2017)), 5425-5434
[37] Ovsjanikov, M.; Ben-Chen, M.; Solomon, J.; Butscher, A.; Guibas, L., Functional maps: a flexible representation of maps between shapes, ACM Trans. Graph., 31, Article 30 pp. (2012)
[38] Pokrass, J.; Bronstein, A. M.; Bronstein, M. M.; Sprechmann, P.; Sapiro, G., Sparse modeling of intrinsic correspondences, Comput. Graph. Forum, 32, 459-468 (2013)
[39] Popa, T.; Julius, D.; Sheffer, A., Material-aware mesh deformations, (IEEE International Conference on Shape Modeling and Applications (SMI’06) (2006)), 22
[40] Pottmann, H.; Leopoldseder, S.; Hofer, M., Registration without ICP, Comput. Vis. Image Underst., 95, 54-71 (2004)
[41] Rodolà, E.; Bulò, S. R.; Windheuser, T.; Vestner, M.; Cremers, D., Dense non-rigid shape correspondence using random forests, (Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014), IEEE Computer Society), 4177-4184
[42] Rodolà, E.; Cosmo, L.; Bronstein, M. M.; Torsello, A.; Cremers, D., Partial functional correspondence, Comput. Graph. Forum, 36, 222-236 (2017)
[43] Rusinkiewicz, S.; Levoy, M., Efficient variants of the ICP algorithm, (Proceedings Third International Conference on 3-D Digital Imaging and Modeling (2001)), 145-152
[44] Rusu, R. B.; Blodow, N.; Beetz, M., Fast point feature histograms (FPFH) for 3D registration, (IEEE International Conference on Robotics and Automation (2009)), 3212-3217
[45] Rusu, R. B.; Blodow, N.; Marton, Z. C.; Beetz, M., Aligning point cloud views using persistent feature histograms, (IEEE/RSJ International Conference on Intelligent Robots and Systems (2008)), 3384-3391
[46] Sauvage, B.; Hahmann, S.; Bonneau, G. P.; Elber, G., Detail preserving deformation of B-spline surfaces with volume constraint, Comput. Aided Geom. Des., 25, 678-696 (2008) · Zbl 1172.65346
[47] Sorkine, O., Differential representations for mesh processing, Comput. Graph. Forum, 25, 789-807 (2006)
[48] Sorkine, O.; Alexa, M., As-rigid-as-possible surface modeling, (Proceedings of the Fifth Eurographics Symposium on Geometry Processing, Eurographics Association (2007)), 109-116
[49] Tam, G. K.; Cheng, Z. Q.; Lai, Y. K.; Langbein, F.; Liu, Y.; Marshall, A. D.; Martin, R.; Sun, X.; Rosin, P. L., Registration of 3d point clouds and meshes: a survey from rigid to nonrigid, IEEE Trans. Vis. Comput. Graph., 19, 1199-1217 (2013)
[50] Tam, G. K.L.; Martin, R. R.; Rosin, P. L.; Lai, Y. K., Diffusion pruning for rapidly and robustly selecting global correspondences using local isometry, ACM Trans. Graph., 33, Article 4 pp. (2014) · Zbl 1288.68240
[51] Tombari, F.; Salti, S.; Di Stefano, L., Unique Signatures of Histograms for Local Surface Description, 356-369 (2010), Springer Berlin Heidelberg
[52] Vestner, M.; Lähner, Z.; Boyarski, A.; Litany, O.; Slossberg, R.; Remez, T.; Rodolà, E.; Bronstein, A. M.; Bronstein, M. M.; Kimmel, R.; Cremers, D., Efficient deformable shape correspondence via kernel matching, (2017 International Conference on 3D Vision (3DV) (2017)), 517-526
[53] Vlasic, D.; Baran, I.; Matusik, W.; Popović, J., Articulated mesh animation from multi-view silhouettes, ACM Trans. Graph., 27, Article 97 pp. (2008)
[54] Wei, L.; Huang, Q.; Ceylan, D.; Vouga, E.; Li, H., Dense human body correspondence using convolutional networks, (Proc. CVPR (2016)), 1544-1553
[55] Yang, J.; Li, K.; Li, K.; Lai, Y. K., Sparse non-rigid registration of 3D shapes, Comput. Graph. Forum, 34, 89-99 (2015)
[56] Zeng, A.; Song, S.; Niessner, M.; Fisher, M.; Xiao, J.; Funkhouser, T., 3DMatch: learning the matching of local 3D geometry in range scans, (Proc. CVPR (2017)), 1-12
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.