×

zbMATH — the first resource for mathematics

Space-time isogeometric flow analysis with built-in Reynolds-equation limit. (English) Zbl 1425.76142

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Software:
SUPG
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Reynolds, O., On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments including an experimental determination of the viscosity of olive oil, Philos. Trans. Roy. Soc. Lond., 177, 157-234 (1886) · JFM 18.0946.04
[2] Bayada, G.; Chamba, M., The transition between the Stokes equations and the Reynolds equation: A mathematical proof, Appl. Math. Optim., 14, 73-93 (1986) · Zbl 0701.76039
[3] Sfyris, D.; Chasalevris, A., An exact analytical solution of the Reynolds equations for the finite journal bearing lubrication, Tribol. Int., 55, 46-58 (2012)
[4] Takizawa, K.; Tezduyar, T. E., Multiscale space-time fluid-structure interaction techniques, Comput. Mech., 48, 247-267 (2011) · Zbl 1398.76128
[5] Takizawa, K.; Tezduyar, T. E., Space-time fluid-structure interaction methods, Math. Models Methods Appl. Sci., 22, 1230001 (2012) · Zbl 1248.76118
[6] Takizawa, K.; Tezduyar, T. E.; Kuraishi, T., Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires, Math. Models Methods Appl. Sci., 25, 2227-2255 (2015) · Zbl 1325.76139
[7] Takizawa, K.; Henicke, B.; Puntel, A.; Spielman, T.; Tezduyar, T. E., Space-time computational techniques for the aerodynamics of flapping wings, J. Appl. Mech., 79, 010903 (2012)
[8] Takizawa, K.; Tezduyar, T. E.; Otoguro, Y.; Terahara, T.; Kuraishi, T.; Hattori, H., Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA), Comput. Fluids, 142, 15-20 (2017) · Zbl 1390.76689
[9] Takizawa, K.; Tezduyar, T. E.; Mochizuki, H.; Hattori, H.; Mei, S.; Pan, L.; Montel, K., Space-time VMS method for flow computations with slip interfaces (ST-SI), Math. Models Methods Appl. Sci., 25, 2377-2406 (2015) · Zbl 1329.76345
[10] Takizawa, K.; Tezduyar, T. E.; Kuraishi, T.; Tabata, S.; Takagi, H., Computational thermo-fluid analysis of a disk brake, Comput. Mech., 57, 965-977 (2016) · Zbl 1382.74044
[11] Tezduyar, T. E., Stabilized finite element formulations for incompressible flow computations, Adv. Appl. Mech., 28, 1-44 (1992) · Zbl 0747.76069
[12] Tezduyar, T. E., Computation of moving boundaries and interfaces and stabilization parameters, Int. J. Numer. Methods Fluids, 43, 555-575 (2003) · Zbl 1032.76605
[13] Tezduyar, T. E.; Sathe, S., Modeling of fluid-structure interactions with the space-time finite elements: Solution techniques, Int. J. Numer. Methods Fluids, 54, 855-900 (2007) · Zbl 1144.74044
[14] Brooks, A. N.; Hughes, T. J. R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 32, 199-259 (1982) · Zbl 0497.76041
[15] Hughes, T. J. R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Eng., 127, 387-401 (1995) · Zbl 0866.76044
[16] Hughes, T. J. R.; Oberai, A. A.; Mazzei, L., Large eddy simulation of turbulent channel flows by the variational multiscale method, Phys. Fluids, 13, 1784-1799 (2001) · Zbl 1184.76237
[17] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Hughes, T. J. R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Eng., 197, 173-201 (2007) · Zbl 1169.76352
[18] Bazilevs, Y.; Akkerman, I., Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method, J. Comput. Phys., 229, 3402-3414 (2010) · Zbl 1290.76037
[19] Bazilevs, Y.; Calo, V. M.; Hughes, T. J. R.; Zhang, Y., Isogeometric fluid-structure interaction: Theory, algorithms and computations, Comput. Mech., 43, 3-37 (2008) · Zbl 1169.74015
[20] Takizawa, K.; Bazilevs, Y.; Tezduyar, T. E., Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling, Arch. Comput. Methods Eng., 19, 171-225 (2012) · Zbl 1354.92023
[21] Bazilevs, Y.; Hsu, M.-C.; Takizawa, K.; Tezduyar, T. E., ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction, Math. Models Methods Appl. Sci., 22, 1230002 (2012) · Zbl 1404.76187
[22] Bazilevs, Y.; Takizawa, K.; Tezduyar, T. E., Computational Fluid-Structure Interaction: Methods and Applications (2013) · Zbl 1286.74001
[23] Bazilevs, Y.; Takizawa, K.; Tezduyar, T. E., Challenges and directions in computational fluid-structure interaction, Math. Models Methods Appl. Sci., 23, 215-221 (2013) · Zbl 1261.76025
[24] Bazilevs, Y.; Takizawa, K.; Tezduyar, T. E., New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods, Math. Models Methods Appl. Sci., 25, 2217-2226 (2015) · Zbl 1329.76007
[25] Kalro, V.; Tezduyar, T. E., A parallel 3D computational method for fluid-structure interactions in parachute systems, Comput. Methods Appl. Mech. Eng., 190, 321-332 (2000) · Zbl 0993.76044
[26] Bazilevs, Y.; Hughes, T. J. R., Weak imposition of Dirichlet boundary conditions in fluid mechanics, Comput. Fluids, 36, 12-26 (2007) · Zbl 1115.76040
[27] Bazilevs, Y.; Michler, C.; Calo, V. M.; Hughes, T. J. R., Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes, Comput. Methods Appl. Mech. Eng., 199, 780-790 (2010) · Zbl 1406.76023
[28] Hsu, M.-C.; Akkerman, I.; Bazilevs, Y., Wind turbine aerodynamics using ALE-VMS: Validation and role of weakly enforced boundary conditions, Comput. Mech., 50, 499-511 (2012)
[29] Bazilevs, Y.; Hughes, T. J. R., NURBS-based isogeometric analysis for the computation of flows about rotating components, Comput. Mech., 43, 143-150 (2008) · Zbl 1171.76043
[30] Hsu, M.-C.; Bazilevs, Y., Fluid-structure interaction modeling of wind turbines: Simulating the full machine, Comput. Mech., 50, 821-833 (2012) · Zbl 1311.74038
[31] Moghadam, M. E.; Bazilevs, Y.; Hsia, T.-Y.; Vignon-Clementel, I. E.; Marsden, A. L.; M. of Congenital Hearts Alliance (MOCHA), A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations, Comput. Mech., 48, 277-291 (2011) · Zbl 1398.76102
[32] Bazilevs, Y.; Hsu, M.-C.; Akkerman, I.; Wright, S.; Takizawa, K.; Henicke, B.; Spielman, T.; Tezduyar, T. E., 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics, Int. J. Numer. Methods Fluids, 65, 207-235 (2011) · Zbl 1428.76086
[33] Bazilevs, Y.; Hsu, M.-C.; Kiendl, J.; Wüchner, R.; Bletzinger, K.-U., 3D simulation of wind turbine rotors at full scale. Part II: Fluid-structure interaction modeling with composite blades, Int. J. Numer. Methods Fluids, 65, 236-253 (2011) · Zbl 1428.76087
[34] Hsu, M.-C.; Akkerman, I.; Bazilevs, Y., High-performance computing of wind turbine aerodynamics using isogeometric analysis, Comput. Fluids, 49, 93-100 (2011) · Zbl 1271.76276
[35] Bazilevs, Y.; Hsu, M.-C.; Scott, M. A., Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations and with application to wind turbines, Comput. Methods Appl. Mech. Eng., 249-252, 28-41 (2012) · Zbl 1348.74094
[36] Hsu, M.-C.; Akkerman, I.; Bazilevs, Y., Finite element simulation of wind turbine aerodynamics: Validation study using NREL Phase VI experiment, Wind Ener., 17, 461-481 (2014)
[37] Korobenko, A.; Hsu, M.-C.; Akkerman, I.; Tippmann, J.; Bazilevs, Y., Structural mechanics modeling and FSI simulation of wind turbines, Math. Models Methods Appl. Sci., 23, 249-272 (2013) · Zbl 1261.74011
[38] Bazilevs, Y.; Takizawa, K.; Tezduyar, T. E.; Hsu, M.-C.; Kostov, N.; Mcintyre, S., Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods, Arch. Comput. Methods Eng., 21, 359-398 (2014) · Zbl 1348.74095
[39] Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J., Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines, Int. J. Numer. Methods Eng., 102, 766-783 (2015) · Zbl 1352.76033
[40] Korobenko, A.; Yan, J.; Gohari, S. M. I.; Sarkar, S.; Bazilevs, Y., FSI simulation of two back-to-back wind turbines in atmospheric boundary layer flow, Comput. Fluids, 158, 167-175 (2017) · Zbl 1390.86036
[41] Korobenko, A.; Bazilevs, Y.; Takizawa, K.; Tezduyar, T. E.; Tezduyar, T. E., Frontiers in Computational Fluid-Structure Interaction and Flow Simulation: Research from Lead Investigators under Forty - 2018, 253-336 (2018) · Zbl 1406.76003
[42] A. Korobenko, Y. Bazilevs, K. Takizawa and T. E. Tezduyar, Computer modeling of wind turbines: 1. ALE-VMS and ST-VMS aerodynamic and FSI analysis, to appear in Arch. Comput. Methods Eng., to appear, (2018), doi:10.1007/s11831-018-9292-1.
[43] Korobenko, A.; Hsu, M.-C.; Akkerman, I.; Bazilevs, Y., Aerodynamic simulation of vertical-axis wind turbines, J. Appl. Mech., 81, 021011 (2013)
[44] Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J.; Kinzel, M.; Dabiri, J. O., FSI modeling of vertical-axis wind turbines, J. Appl. Mech., 81, 081006 (2014)
[45] Yan, J.; Korobenko, A.; Deng, X.; Bazilevs, Y., Computational free-surface fluid-structure interaction with application to floating offshore wind turbines, Comput. Fluids, 141, 155-174 (2016) · Zbl 1390.76376
[46] Bazilevs, Y.; Korobenko, A.; Yan, J.; Pal, A.; Gohari, S. M. I.; Sarkar, S., ALE-VMS formulation for stratified turbulent incompressible flows with applications, Math. Models Methods Appl. Sci., 25, 2349-2375 (2015) · Zbl 1329.76050
[47] Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J., FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades, J. Appl. Mech., 83, 061010 (2016)
[48] Bazilevs, Y.; Calo, V. M.; Zhang, Y.; Hughes, T. J. R., Isogeometric fluid-structure interaction analysis with applications to arterial blood flow, Comput. Mech., 38, 310-322 (2006) · Zbl 1161.74020
[49] Bazilevs, Y.; Gohean, J. R.; Hughes, T. J. R.; Moser, R. D.; Zhang, Y., Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device, Comput. Methods Appl. Mech. Eng., 198, 3534-3550 (2009) · Zbl 1229.74096
[50] Bazilevs, Y.; Hsu, M.-C.; Benson, D.; Sankaran, S.; Marsden, A., Computational fluid-structure interaction: Methods and application to a total cavopulmonary connection, Comput. Mech., 45, 77-89 (2009) · Zbl 1398.92056
[51] Bazilevs, Y.; Hsu, M.-C.; Zhang, Y.; Wang, W.; Liang, X.; Kvamsdal, T.; Brekken, R.; Isaksen, J., A fully-coupled fluid-structure interaction simulation of cerebral aneurysms, Comput. Mech., 46, 3-16 (2010) · Zbl 1301.92014
[52] Bazilevs, Y.; Hsu, M.-C.; Zhang, Y.; Wang, W.; Kvamsdal, T.; Hentschel, S.; Isaksen, J., Computational fluid-structure interaction: Methods and application to cerebral aneurysms, Biomech. Model. Mechanobiol., 9, 481-498 (2010)
[53] Hsu, M.-C.; Bazilevs, Y., Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations, Finite Elem. Anal. Des., 47, 593-599 (2011)
[54] Long, C. C.; Marsden, A. L.; Bazilevs, Y., Fluid-structure interaction simulation of pulsatile ventricular assist devices, Comput. Mech., 52, 971-981 (2013) · Zbl 1388.74039
[55] Long, C. C.; Esmaily-Moghadam, M.; Marsden, A. L.; Bazilevs, Y., Computation of residence time in the simulation of pulsatile ventricular assist devices, Comput. Mech., 54, 911-919 (2014) · Zbl 1311.74041
[56] Long, C. C.; Marsden, A. L.; Bazilevs, Y., Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk, Comput. Mech., 54, 921-932 (2014) · Zbl 1314.74056
[57] Hsu, M.-C.; Kamensky, D.; Bazilevs, Y.; Sacks, M. S.; Hughes, T. J. R., Fluid-structure interaction analysis of bioprosthetic heart valves: Significance of arterial wall deformation, Comput. Mech., 54, 1055-1071 (2014) · Zbl 1311.74039
[58] Hsu, M.-C.; Kamensky, D.; Xu, F.; Kiendl, J.; Wang, C.; Wu, M. C. H.; Mineroff, J.; Reali, A.; Bazilevs, Y.; Sacks, M. S., Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models, Comput. Mech., 55, 1211-1225 (2015) · Zbl 1325.74048
[59] Kamensky, D.; Hsu, M.-C.; Schillinger, D.; Evans, J. A.; Aggarwal, A.; Bazilevs, Y.; Sacks, M. S.; Hughes, T. J. R., An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves, Comput. Methods Appl. Mech. Eng., 284, 1005-1053 (2015) · Zbl 1423.74273
[60] Akkerman, I.; Bazilevs, Y.; Benson, D. J.; Farthing, M. W.; Kees, C. E., Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics, J. Appl. Mech., 79, 010905 (2012)
[61] Akkerman, I.; Dunaway, J.; Kvandal, J.; Spinks, J.; Bazilevs, Y., Toward free-surface modeling of planing vessels: Simulation of the Fridsma hull using ALE-VMS, Comput. Mech., 50, 719-727 (2012)
[62] Wang, C.; Wu, M. C. H.; Xu, F.; Hsu, M.-C.; Bazilevs, Y., Modeling of a hydraulic arresting gear using fluid-structure interaction and isogeometric analysis, Comput. Fluids, 142, 3-14 (2017) · Zbl 1390.76013
[63] M. C. H. Wu, D. Kamensky, C. Wang, A. J. Herrema, F. Xu, M. S. Pigazzini, A. Verma, A. L. Marsden, Y. Bazilevs and M.-C. Hsu, Optimizing fluid-structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear, Comput. Methods Appl. Mech. Eng. Published online (2017), doi:10.1016/j.cma.2016.09.032.
[64] Yan, J.; Deng, X.; Korobenko, A.; Bazilevs, Y., Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines, Comput. Fluids, 158, 157-166 (2017) · Zbl 1390.86027
[65] Augier, B.; Yan, J.; Korobenko, A.; Czarnowski, J.; Ketterman, G.; Bazilevs, Y., Experimental and numerical FSI study of compliant hydrofoils, Comput. Mech., 55, 1079-1090 (2015)
[66] Yan, J.; Augier, B.; Korobenko, A.; Czarnowski, J.; Ketterman, G.; Bazilevs, Y., FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration, Comput. Fluids, 141, 201-211 (2016) · Zbl 1390.76375
[67] T. A. Helgedagsrud, Y. Bazilevs, K. M. Mathisen and O. A. Oiseth, Computational and experimental investigation of free vibration and flutter of bridge decks, Comput. Mech. Published online, doi:10.1007/s00466-018-1587-4. · Zbl 07024101
[68] T. A. Helgedagsrud, Y. Bazilevs, A. Korobenko, K. M. Mathisen and O. A. Oiseth, Using ALE-VMS to compute aerodynamic derivatives of bridge sections, Comput. Fluids Published online, doi:10.1016/j.compfluid.2018.04.037. · Zbl 1411.74029
[69] T. A. Helgedagsrud, I. Akkerman, Y. Bazilevs, K. M. Mathisen and O. A. Oiseth, Isogeometric modeling and experimental investigation of moving-domain bridge aerodynamics, ASCE J. Eng. Mech. Accepted for publication.
[70] Kamensky, D.; Evans, J. A.; Hsu, M.-C.; Bazilevs, Y., Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid-thin structure interaction analysis, with application to heart valve modeling, Comput. Math. Appl., 74, 2068-2088 (2017) · Zbl 1397.65274
[71] Yu, Y.; Kamensky, D.; Hsu, M.-C.; Lu, X. Y.; Bazilevs, Y.; Hughes, T. J. R., Error estimates for projection-based dynamic augmented Lagrangian boundary condition enforcement, with application to fluid-structure interaction, Math. Models Methods Appl. Sci., 28, 2457-2509 (2018) · Zbl 1411.74059
[72] Tezduyar, T. E.; Takizawa, K.; Moorman, C.; Wright, S.; Christopher, J., Space-time finite element computation of complex fluid-structure interactions, Int. J. Numer. Methods Fluids, 64, 1201-1218 (2010) · Zbl 1427.76148
[73] Yan, J.; Korobenko, A.; Tejada-Martinez, A. E.; Golshan, R.; Bazilevs, Y., A new variational multiscale formulation for stratified incompressible turbulent flows, Comput. Fluids, 158, 150-156 (2017) · Zbl 1390.76107
[74] Van Opstal, T. M.; Yan, J.; Coley, C.; Evans, J. A.; Kvamsdal, T.; Bazilevs, Y., Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows, Comput. Methods Appl. Mech. Eng., 316, 859-879 (2017)
[75] Xu, F.; Moutsanidis, G.; Kamensky, D.; Hsu, M.-C.; Murugan, M.; Ghoshal, A.; Bazilevs, Y., Compressible flows on moving domains: Stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling, Comput. Fluids, 158, 201-220 (2017) · Zbl 1390.76805
[76] T. E. Tezduyar and K. Takizawa, Space-time computations in practical engineering applications: A summary of the 25-year history, Comput. Mech. published online, (2018), doi:10.1007/s00466-018-1620-7. · Zbl 07053692
[77] Takizawa, K.; Tezduyar, T. E., Computational methods for parachute fluid-structure interactions, Arch. Comput. Methods Eng., 19, 125-169 (2012) · Zbl 1354.76113
[78] Takizawa, K.; Fritze, M.; Montes, D.; Spielman, T.; Tezduyar, T. E., Fluid-structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity, Comput. Mech., 50, 835-854 (2012)
[79] Takizawa, K.; Tezduyar, T. E.; Boben, J.; Kostov, N.; Boswell, C.; Buscher, A., Fluid-structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity, Comput. Mech., 52, 1351-1364 (2013) · Zbl 1398.74097
[80] Takizawa, K.; Tezduyar, T. E.; Boswell, C.; Tsutsui, Y.; Montel, K., Special methods for aerodynamic-moment calculations from parachute FSI modeling, Comput. Mech., 55, 1059-1069 (2015)
[81] Takizawa, K.; Montes, D.; Fritze, M.; Mcintyre, S.; Boben, J.; Tezduyar, T. E., Methods for FSI modeling of spacecraft parachute dynamics and cover separation, Math. Models Methods Appl. Sci., 23, 307-338 (2013) · Zbl 1261.76013
[82] Takizawa, K.; Tezduyar, T. E.; Boswell, C.; Kolesar, R.; Montel, K., FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes, Comput. Mech., 54, 1203-1220 (2014)
[83] Takizawa, K.; Tezduyar, T. E.; Kolesar, R.; Boswell, C.; Kanai, T.; Montel, K., Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes, Comput. Mech., 54, 1461-1476 (2014) · Zbl 1309.74025
[84] Takizawa, K.; Tezduyar, T. E.; Kolesar, R., FSI modeling of the Orion spacecraft drogue parachutes, Comput. Mech., 55, 1167-1179 (2015) · Zbl 1325.74169
[85] Takizawa, K.; Henicke, B.; Tezduyar, T. E.; Hsu, M.-C.; Bazilevs, Y., Stabilized space-time computation of wind-turbine rotor aerodynamics, Comput. Mech., 48, 333-344 (2011) · Zbl 1398.76127
[86] Takizawa, K.; Henicke, B.; Montes, D.; Tezduyar, T. E.; Hsu, M.-C.; Bazilevs, Y., Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamics, Comput. Mech., 48, 647-657 (2011) · Zbl 1334.74032
[87] Takizawa, K.; Tezduyar, T. E.; Mcintyre, S.; Kostov, N.; Kolesar, R.; Habluetzel, C., Space-time VMS computation of wind-turbine rotor and tower aerodynamics, Comput. Mech., 53, 1-15 (2014) · Zbl 1398.76129
[88] Takizawa, K.; Bazilevs, Y.; Tezduyar, T. E.; Hsu, M.-C.; Øiseth, O.; Mathisen, K. M.; Kostov, N.; Mcintyre, S., Engineering analysis and design with ALE-VMS and space-time methods, Arch. Comput. Methods Eng., 21, 481-508 (2014) · Zbl 1348.74104
[89] Takizawa, K., Computational engineering analysis with the new-generation space-time methods, Comput. Mech., 54, 193-211 (2014)
[90] Takizawa, K.; Henicke, B.; Puntel, A.; Kostov, N.; Tezduyar, T. E., Space-time techniques for computational aerodynamics modeling of flapping wings of an actual locust, Comput. Mech., 50, 743-760 (2012) · Zbl 1286.76179
[91] Takizawa, K.; Henicke, B.; Puntel, A.; Kostov, N.; Tezduyar, T. E., Computer modeling techniques for flapping-wing aerodynamics of a locust, Comput. Fluids, 85, 125-134 (2013) · Zbl 1290.76170
[92] Takizawa, K.; Kostov, N.; Puntel, A.; Henicke, B.; Tezduyar, T. E., Space-time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle, Comput. Mech., 50, 761-778 (2012) · Zbl 1286.76180
[93] Takizawa, K.; Tezduyar, T. E.; Kostov, N., Sequentially-coupled space-time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV, Comput. Mech., 54, 213-233 (2014)
[94] Takizawa, K.; Tezduyar, T. E.; Buscher, A.; Asada, S., Space-time interface-tracking with topology change (ST-TC), Comput. Mech., 54, 955-971 (2014) · Zbl 1311.74045
[95] Takizawa, K.; Tezduyar, T. E.; Buscher, A., Space-time computational analysis of MAV flapping-wing aerodynamics with wing clapping, Comput. Mech., 55, 1131-1141 (2015)
[96] Takizawa, K.; Bazilevs, Y.; Tezduyar, T. E.; Long, C. C.; Marsden, A. L.; Schjodt, K., ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling, Math. Models Methods Appl. Sci., 24, 2437-2486 (2014) · Zbl 1296.76113
[97] Takizawa, K.; Schjodt, K.; Puntel, A.; Kostov, N.; Tezduyar, T. E., Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent, Comput. Mech., 50, 675-686 (2012) · Zbl 1311.76157
[98] Takizawa, K.; Schjodt, K.; Puntel, A.; Kostov, N.; Tezduyar, T. E., Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms, Comput. Mech., 51, 1061-1073 (2013) · Zbl 1366.76106
[99] Suito, H.; Takizawa, K.; Huynh, V. Q. H.; Sze, D.; Ueda, T., FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta, Comput. Mech., 54, 1035-1045 (2014) · Zbl 1311.74044
[100] Suito, H.; Takizawa, K.; Huynh, V. Q. H.; Sze, D.; Ueda, T.; Tezduyar, T. E.; Bazilevs, Y.; Takizawa, K., Advances in Computational Fluid-Structure Interaction and Flow Simulation: New Methods and Challenging Computations, 379-386 (2016) · Zbl 1356.76471
[101] Takizawa, K.; Tezduyar, T. E.; Uchikawa, H.; Terahara, T.; Sasaki, T.; Shiozaki, K.; Yoshida, A.; Komiya, K.; Inoue, G.; Tezduyar, T. E., Frontiers in Computational Fluid-Structure Interaction and Flow Simulation: Research from Lead Investigators under Forty - 2018, 29-89 (2018)
[102] K. Takizawa, T. E. Tezduyar, H. Uchikawa, T. Terahara, T. Sasaki, and A. Yoshida, Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization, Comput. Fluids, published online, (2018), doi:10.1016/j.compfluid.2018.05.025. · Zbl 1411.76184
[103] Takizawa, K.; Tezduyar, T. E.; Buscher, A.; Asada, S., Space-time fluid mechanics computation of heart valve models, Comput. Mech., 54, 973-986 (2014) · Zbl 1311.74083
[104] Takizawa, K.; Tezduyar, T. E.; Bazilevs, Y.; Takizawa, K., Advances in Computational Fluid-Structure Interaction and Flow Simulation: New Methods and Challenging Computations, 159-178 (2016) · Zbl 1356.76291
[105] Takizawa, K.; Tezduyar, T. E.; Terahara, T.; Sasaki, T.; Wriggers, P.; Lenarz, T., Biomed. Technology: Modeling, Experiments and Simulation, 77-99 (2018)
[106] Takizawa, K.; Tezduyar, T. E.; Terahara, T.; Sasaki, T., Heart valve flow computation with the integrated Space-time VMS, slip interface, topology change and isogeometric discretization methods, Comput. Fluids, 158, 176-188 (2017) · Zbl 1390.76944
[107] Takizawa, K.; Montes, D.; Mcintyre, S.; Tezduyar, T. E., Space-time VMS methods for modeling of incompressible flows at high Reynolds numbers, Math. Models Methods Appl. Sci., 23, 223-248 (2013) · Zbl 1261.76037
[108] Takizawa, K.; Tezduyar, T. E.; Hattori, H., Computational analysis of flow-driven string dynamics in turbomachinery, Comput. Fluids, 142, 109-117 (2017) · Zbl 1390.76011
[109] Komiya, K.; Kanai, T.; Otoguro, Y.; Kaneko, M.; Hirota, K.; Zhang, Y.; Takizawa, K.; Tezduyar, T. E.; Nohmi, M.; Tsuneda, T.; Kawai, M.; Isono, M., Computational analysis of flow-driven string dynamics in a pump and residence time calculation, Proc. 29th IAHR Symposium on Hydraulic Machinery and Systems (2018)
[110] Kanai, T.; Takizawa, K.; Tezduyar, T. E.; Komiya, K.; Kaneko, M.; Hirota, K.; Nohmi, M.; Tsuneda, T.; Kawai, M.; Isono, M., Methods for computation of flow-driven string dynamics in a pump and residence time, Math. Models Methods Appl. Sci. (2019)
[111] Otoguro, Y.; Takizawa, K.; Tezduyar, T. E., Space-time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method, Comput. Fluids, 158, 189-200 (2017) · Zbl 1390.76345
[112] Otoguro, Y.; Takizawa, K.; Tezduyar, T. E.; Tezduyar, T. E., Frontiers in Computational Fluid-Structure Interaction and Flow Simulation: Research from Lead Investigators under Forty — 2018, 399-434 (2018) · Zbl 1406.76003
[113] Y. Otoguro, K. Takizawa, T. E. Tezduyar, K. Nagaoka and S. Mei, Turbocharger turbine and exhaust manifold flow computation with the space-time variational multiscale method and isogeometric analysis, Comput. Fluids published online, (2018), doi:10.1016/j.compfluid.2018.05.019. · Zbl 1411.76070
[114] Takizawa, K.; Tezduyar, T. E.; Asada, S.; Kuraishi, T., Space-time method for flow computations with slip interfaces and topology changes (ST-SI-TC), Comput. Fluids, 141, 124-134 (2016) · Zbl 1390.76358
[115] Kuraishi, T.; Takizawa, K.; Tezduyar, T. E.; Tezduyar, T. E., Frontiers in Computational Fluid-Structure Interaction and Flow Simulation: Research from Lead Investigators under Forty-2018, 337-376 (2018) · Zbl 1406.76003
[116] T. Kuraishi, K. Takizawa and T. E. Tezduyar, Tire aerodynamics with actual tire geometry, road contact and tire deformation, Comput. Mech. published online, (2018), doi:10.1007/s00466-018-1642-1. · Zbl 07053716
[117] Takizawa, K.; Tezduyar, T. E.; Terahara, T., Ram-air parachute structural and fluid mechanics computations with the space-time isogeometric analysis (ST-IGA), Comput. Fluids, 141, 191-200 (2016) · Zbl 1390.76359
[118] Takizawa, K.; Tezduyar, T. E.; Kanai, T., Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity, Math. Models Methods Appl. Sci., 27, 771-806 (2017) · Zbl 1361.76017
[119] Kanai, T.; Takizawa, K.; Tezduyar, T. E.; Tanaka, T.; Hartmann, A., Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization, Comput. Mech., 62, 301-321 (2018) · Zbl 07037442
[120] Takizawa, K.; Tezduyar, T. E., Space-time computation techniques with continuous representation in time (ST-C), Comput. Mech., 53, 91-99 (2014)
[121] Tezduyar, T. E.; Cragin, T.; Sathe, S.; Nanna, B.; Onate, E.; Garcia, J.; Bergan, P.; Kvamsdal, T., FSI computations in arterial fluid mechanics with estimated zero-pressure arterial geometry, Marine 2007 (2007)
[122] Tezduyar, T. E.; Sathe, S.; Schwaab, M.; Conklin, B. S., Arterial fluid mechanics modeling with the stabilized space-time fluid-structure interaction technique, Int. J. Numer. Methods Fluids, 57, 601-629 (2008) · Zbl 1230.76054
[123] Takizawa, K.; Christopher, J.; Tezduyar, T. E.; Sathe, S., Space-time finite element computation of arterial fluid-structure interactions with patient-specific data, Int. J. Numer. Methods Biomed. Eng., 26, 101-116 (2010) · Zbl 1180.92023
[124] Takizawa, K.; Moorman, C.; Wright, S.; Purdue, J.; Mcphail, T.; Chen, P. R.; Warren, J.; Tezduyar, T. E., Patient-specific arterial fluid-structure interaction modeling of cerebral aneurysms, Int. J. Numer. Methods Fluids, 65, 308-323 (2011) · Zbl 1203.92044
[125] Tezduyar, T. E.; Takizawa, K.; Brummer, T.; Chen, P. R., Space-time fluid-structure interaction modeling of patient-specific cerebral aneurysms, Int. J. Numer. Methods Biomed. Eng., 27, 1665-1710 (2011) · Zbl 1244.92036
[126] Takizawa, K.; Takagi, H.; Tezduyar, T. E.; Torii, R., Estimation of element-based zero-stress state for arterial FSI computations, Comput. Mech., 54, 895-910 (2014) · Zbl 1398.74096
[127] Takizawa, K.; Torii, R.; Takagi, H.; Tezduyar, T. E.; Xu, X. Y., Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates, Comput. Mech., 54, 1047-1053 (2014) · Zbl 1311.76158
[128] Takizawa, K.; Tezduyar, T. E.; Sasaki, T.; Wriggers, P.; Lenarz, T., Biomedical Technology: Modeling, Experiments and Simulation, 101-122 (2018)
[129] Takizawa, K.; Tezduyar, T. E.; Sasaki, T., Aorta modeling with the element-based zero-stress state and isogeometric discretization, Comput. Mech., 59, 265-280 (2017)
[130] T. Sasaki, K. Takizawa and T. E. Tezduyar, Aorta zero-stress state modeling with T-spline discretization, Comput. Mech. published online, (2018), doi:10.1007/s00466-018-1651-0. · Zbl 07053724
[131] K. Takizawa, T. E. Tezduyar and T. Sasaki, Isogeometric hyperelastic shell analysis with out-of-plane deformation mapping, Comput. Mech. published online, (2018), doi:10.1007/s00466-018-1616-3. · Zbl 07053688
[132] Van Opstal, T. M.; Van Brummelen, E. H.; De Borst, R.; Lewis, M. R., A finite-element/boundary-element method for large-displacement fluid-structure interaction, Comput. Mech., 50, 779-788 (2012) · Zbl 1311.76075
[133] Van Opstal, T. M.; Van Brummelen, E. H.; Van Zwieten, G. J., A finite-element/boundary-element method for three-dimensional, large-displacement fluid-structure-interaction, Comput. Methods Appl. Mech. Eng., 284, 637-663 (2015) · Zbl 1423.74287
[134] Tezduyar, T. E.; Aliabadi, S. K.; Behr, M.; Mittal, S., Massively parallel finite element simulation of compressible and incompressible flows, Comput. Methods Appl. Mech. Eng., 119, 157-177 (1994) · Zbl 0848.76040
[135] Takizawa, K.; Tezduyar, T. E.; Otoguro, Y., Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations, Comput. Mech., 62, 1169-1186 (2018) · Zbl 06981055
[136] Tezduyar, T. E.; Hughes, T. J. R., Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations, Proc. AIAA 21st Aerospace Sciences Meeting (1983)
[137] Hughes, T. J. R.; Tezduyar, T. E., Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations, Comput. Methods Appl. Mech. Eng., 45, 217-284 (1984) · Zbl 0542.76093
[138] Tezduyar, T. E.; Park, Y. J., Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations, Comput. Methods Appl. Mech. Eng., 59, 307-325 (1986) · Zbl 0593.76096
[139] Tezduyar, T. E.; Ganjoo, D. K., Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: Applications to transient convection-diffusion problems, Comput. Methods Appl. Mech. Eng., 59, 49-71 (1986) · Zbl 0604.76077
[140] Le Beau, G. J.; Ray, S. E.; Aliabadi, S. K.; Tezduyar, T. E., SUPG finite element computation of compressible flows with the entropy and conservation variables formulations, Comput. Methods Appl. Mech. Eng., 104, 397-422 (1993) · Zbl 0772.76037
[141] Tezduyar, T. E.; Osawa, Y., Finite element stabilization parameters computed from element matrices and vectors, Comput. Methods Appl. Mech. Eng., 190, 411-430 (2000) · Zbl 0973.76057
[142] Tezduyar, T. E.; Stein, E.; Borst, R. D.; Hughes, T. J. R., Encyclopedia of Comput. Mech. Fluids, 3 (2004)
[143] Tezduyar, T. E., Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces, Comput. Fluids, 36, 191-206 (2007) · Zbl 1177.76202
[144] Tezduyar, T. E.; Senga, M., Stabilization and shock-capturing parameters in SUPG formulation of compressible flows, Comput. Methods Appl. Mech. Eng., 195, 1621-1632 (2006) · Zbl 1122.76061
[145] Tezduyar, T. E.; Senga, M., SUPG finite element computation of inviscid supersonic flows with YZβ shock-capturing, Comput. Fluids, 36, 147-159 (2007) · Zbl 1127.76029
[146] Tezduyar, T. E.; Senga, M.; Vicker, D., Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZβ shock-capturing, Comput. Mech., 38, 469-481 (2006) · Zbl 1176.76077
[147] Tezduyar, T. E.; Sathe, S., Enhanced-discretization selective stabilization procedure (EDSSP), Comput. Mech., 38, 456-468 (2006) · Zbl 1187.76712
[148] Corsini, A.; Rispoli, F.; Santoriello, A.; Tezduyar, T. E., Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation, Comput. Mech., 38, 356-364 (2006) · Zbl 1177.76192
[149] Rispoli, F.; Corsini, A.; Tezduyar, T. E., Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD), Comput. Fluids, 36, 121-126 (2007) · Zbl 1181.76098
[150] Tezduyar, T. E.; Ramakrishnan, S.; Sathe, S., Stabilized formulations for incompressible flows with thermal coupling, Int. J. Numer. Methods Fluids, 57, 1189-1209 (2008) · Zbl 1140.76024
[151] Rispoli, F.; Saavedra, R.; Corsini, A.; Tezduyar, T. E., Computation of inviscid compressible flows with the V-SGS stabilization and YZβ shock-capturing, Int. J. Numer. Methods Fluids, 54, 695-706 (2007) · Zbl 1207.76104
[152] Bazilevs, Y.; Calo, V. M.; Tezduyar, T. E.; Hughes, T. J. R., YZβ discontinuity-capturing for advection-dominated processes with application to arterial drug delivery, Int. J. Numer. Methods Fluids, 54, 593-608 (2007) · Zbl 1207.76049
[153] Corsini, A.; Menichini, C.; Rispoli, F.; Santoriello, A.; Tezduyar, T. E., A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms, J. Appl. Mech., 76, 021211 (2009)
[154] Rispoli, F.; Saavedra, R.; Menichini, F.; Tezduyar, T. E., Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZβ shock-capturing, J. Appl. Mech., 76, 021209 (2009)
[155] Corsini, A.; Iossa, C.; Rispoli, F.; Tezduyar, T. E., A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors, Comput. Mech., 46, 159-167 (2010) · Zbl 1301.76045
[156] Hsu, M.-C.; Bazilevs, Y.; Calo, V. M.; Tezduyar, T. E.; Hughes, T. J. R., Improving stability of stabilized and multiscale formulations in flow simulations at small time steps, Comput. Methods Appl. Mech. Eng., 199, 828-840 (2010) · Zbl 1406.76028
[157] Corsini, A.; Rispoli, F.; Tezduyar, T. E., Stabilized finite element computation of NOx emission in aero-engine combustors, Int. J. Numer. Methods Fluids, 65, 254-270 (2011) · Zbl 1426.76240
[158] Corsini, A.; Rispoli, F.; Tezduyar, T. E., Computer modeling of wave-energy air turbines with the SUPG/PSPG formulation and discontinuity-capturing technique, J. Appl. Mech., 79, 010910 (2012)
[159] Corsini, A.; Rispoli, F.; Sheard, A. G.; Tezduyar, T. E., Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations, Comput. Mech., 50, 695-705 (2012) · Zbl 1311.76121
[160] Kler, P. A.; Dalcin, L. D.; Paz, R. R.; Tezduyar, T. E., SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems, Comput. Mech., 51, 171-185 (2013) · Zbl 1312.76062
[161] Corsini, A.; Rispoli, F.; Sheard, A. G.; Takizawa, K.; Tezduyar, T. E.; Venturini, P., A variational multiscale method for particle-cloud tracking in turbomachinery flows, Comput. Mech., 54, 1191-1202 (2014) · Zbl 1311.76030
[162] Rispoli, F.; Delibra, G.; Venturini, P.; Corsini, A.; Saavedra, R.; Tezduyar, T. E., Particle tracking and particle-shock interaction in compressible-flow computations with the V-SGS stabilization and YZβ shock-capturing, Comput. Mech., 55, 1201-1209 (2015) · Zbl 1325.76121
[163] Tezduyar, T. E., Adaptive determination of the finite element stabilization parameters, Proc. ECCOMAS Computational Fluid Dynamics Conf. 2001 (CD-ROM) (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.