×

zbMATH — the first resource for mathematics

A stabilized ALE method for computational fluid-structure interaction analysis of passive morphing in turbomachinery. (English) Zbl 1425.76134

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76F65 Direct numerical and large eddy simulation of turbulence
74S05 Finite element methods applied to problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Software:
SUPG
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bazilevs, Y.; Hsu, M.-C.; Akkerman, I.; Wright, S.; Takizawa, K.; Henicke, B.; Spielman, T.; Tezduyar, T. E., 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics, Int. J. Numer. Methods Fluids, 65, 207-235 (2011) · Zbl 1428.76086
[2] Bazilevs, Y.; Hsu, M.-C.; Kiendl, J.; Wüchner, R.; Bletzinger, K.-U., 3D simulation of wind turbine rotors at full scale. Part II: Fluid-structure interaction modeling with composite blades, Int. J. Numer. Methods Fluids, 65, 236-253 (2011) · Zbl 1428.76087
[3] Takizawa, K.; Henicke, B.; Tezduyar, T. E.; Hsu, M.-C.; Bazilevs, Y., Stabilized space-time computation of wind-turbine rotor aerodynamics, Comput. Mech., 48, 333-344 (2011) · Zbl 1398.76127
[4] Takizawa, K.; Henicke, B.; Montes, D.; Tezduyar, T. E.; Hsu, M.-C.; Bazilevs, Y., Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamics, Comput. Mech., 48, 647-657 (2011) · Zbl 1334.74032
[5] Hsu, M.-C.; Akkerman, I.; Bazilevs, Y., High-performance computing of wind turbine aerodynamics using isogeometric analysis, Comput. Fluids, 49, 93-100 (2011) · Zbl 1271.76276
[6] Bazilevs, Y.; Hsu, M.-C.; Scott, M. A., Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations and with application to wind turbines, Comput. Methods Appl. Mech. Eng., 249-252, 28-41 (2012) · Zbl 1348.74094
[7] Bazilevs, Y.; Takizawa, K.; Tezduyar, T. E., Computational Fluid-Structure Interaction: Methods and Applications (2013) · Zbl 1286.74001
[8] Takizawa, K.; Tezduyar, T. E.; Mcintyre, S.; Kostov, N.; Kolesar, R.; Habluetzel, C., Space-time VMS computation of wind-turbine rotor and tower aerodynamics, Comput. Mech., 53, 1-15 (2014) · Zbl 1398.76129
[9] Hsu, M.-C.; Akkerman, I.; Bazilevs, Y., Finite element simulation of wind turbine aerodynamics: Validation study using NREL phase VI experiment, Wind Energy, 17, 461-481 (2014)
[10] Korobenko, A.; Hsu, M.-C.; Akkerman, I.; Tippmann, J.; Bazilevs, Y., Structural mechanics modeling and FSI simulation of wind turbines, Math. Models Methods Appl. Sci., 23, 249-272 (2013) · Zbl 1261.74011
[11] Korobenko, A.; Hsu, M.-C.; Akkerman, I.; Bazilevs, Y., Aerodynamic simulation of vertical-axis wind turbines, J. Appl. Mech., 81, 021011 (2013)
[12] Bazilevs, Y.; Takizawa, K.; Tezduyar, T. E.; Hsu, M.-C.; Kostov, N.; Mcintyre, S., Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods, Arch. Comput. Methods Eng., 21, 359-398 (2014) · Zbl 1348.74095
[13] Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J.; Kinzel, M.; Dabiri, J. O., FSI modeling of vertical-axis wind turbines, J. Appl. Mech., 81, 081006 (2014)
[14] Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J., Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines, Int. J. Numer. Methods Eng., 102, 766-783 (2015) · Zbl 1352.76033
[15] Takizawa, K.; Bazilevs, Y.; Tezduyar, T. E.; Hsu, M.-C.; Øiseth, O.; Mathisen, K. M.; Kostov, N.; Mcintyre, S., Engineering analysis and design with ALE-VMS and space-time methods, Arch. Comput. Methods Eng., 21, 481-508 (2014) · Zbl 1348.74104
[16] Takizawa, K., Computational engineering analysis with the new-generation space-time methods, Comput. Mech., 54, 193-211 (2014)
[17] Bazilevs, Y.; Korobenko, A.; Yan, J.; Pal, A.; Gohari, S. M. I.; Sarkar, S., ALE-VMS formulation for stratified turbulent incompressible flows with applications, Math. Models Methods Appl. Sci., 25, 2349-2375 (2015) · Zbl 1329.76050
[18] Takizawa, K.; Tezduyar, T. E.; Mochizuki, H.; Hattori, H.; Mei, S.; Pan, L.; Montel, K., Space-time VMS method for flow computations with slip interfaces (ST-SI), Math. Models Methods Appl. Sci., 25, 2377-2406 (2015) · Zbl 1329.76345
[19] Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J., FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades, J. Appl. Mech., 83, 061010 (2016)
[20] Yan, J.; Korobenko, A.; Deng, X.; Bazilevs, Y., Computational free-surface fluid-structure interaction with application to floating offshore wind turbines, Comput. Fluids, 141, 155-174 (2016) · Zbl 1390.76376
[21] Korobenko, A.; Yan, J.; Gohari, S. M. I.; Sarkar, S.; Bazilevs, Y., FSI simulation of two back-to-back wind turbines in atmospheric boundary layer flow, Comput. Fluids, 158, 167-175 (2017) · Zbl 1390.86036
[22] Korobenko, A.; Bazilevs, Y.; Takizawa, K.; Tezduyar, T. E.; Tezduyar, T. E., Frontiers in Computational Fluid-Structure Interaction and Flow Simulation: Research from Lead Investigators Under Forty — 2018, 253-336 (2018) · Zbl 1406.76003
[23] Korobenko, A.; Bazilevs, Y.; Takizawa, K.; Tezduyar, T. E., Computer modeling of wind turbines: 1. ALE-VMS and ST-VMS aerodynamic and FSI analysis, Arch. Comput. Methods Eng. (2018)
[24] Takizawa, K.; Tezduyar, T. E.; Hattori, H., Computational analysis of flow-driven string dynamics in turbomachinery, Comput. Fluids, 142, 109-117 (2017) · Zbl 1390.76011
[25] Takizawa, K.; Tezduyar, T. E.; Otoguro, Y.; Terahara, T.; Kuraishi, T.; Hattori, H., Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA), Comput. Fluids, 142, 15-20 (2017) · Zbl 1390.76689
[26] Otoguro, Y.; Takizawa, K.; Tezduyar, T. E., Space-time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method, Comput. Fluids, 158, 189-200 (2017) · Zbl 1390.76345
[27] Otoguro, Y.; Takizawa, K.; Tezduyar, T. E.; Tezduyar, T. E., Frontiers in Computational Fluid-Structure Interaction and Flow Simulation: Research from Lead Investigators Under Forty — 2018, 399-434 (2018) · Zbl 1406.76003
[28] Otoguro, Y.; Takizawa, K.; Tezduyar, T. E.; Nagaoka, K.; Mei, S., Turbocharger turbine and exhaust manifold flow computation with the space-time variational multiscale method and isogeometric analysis, Comput. Fluids (2018)
[29] Yan, J.; Deng, X.; Korobenko, A.; Bazilevs, Y., Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines, Comput. Fluids, 158, 157-166 (2017) · Zbl 1390.86027
[30] Xu, F.; Moutsanidis, G.; Kamensky, D.; Hsu, M.-C.; Murugan, M.; Ghoshal, A.; Bazilevs, Y., Compressible flows on moving domains: Stabilized methods, weakly enforced essential boundary conditions, sliding interfaces and application to gas-turbine modeling, Comput. Fluids, 158, 201-220 (2017) · Zbl 1390.76805
[31] Komiya, K.; Kanai, T.; Otoguro, Y.; Kaneko, M.; Hirota, K.; Zhang, Y.; Takizawa, K.; Tezduyar, T. E.; Nohmi, M.; Tsuneda, T.; Kawai, M.; Isono, M., Computational analysis of flow-driven string dynamics in a pump and residence time calculation, Proc. 29th IAHR Symp. Hydraulic Machinery and Systems (2018)
[32] Kanai, T.; Takizawa, K.; Tezduyar, T. E.; Komiya, K.; Kaneko, M.; Hirota, K.; Nohmi, M.; Tsuneda, T.; Kawai, M.; Isono, M., Methods for computation of flow-driven string dynamics in a pump and residence time, Math. Models Methods Appl. Sci. (2019)
[33] Brooks, A. N.; Hughes, T. J. R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 32, 199-259 (1982) · Zbl 0497.76041
[34] Tezduyar, T. E., Stabilized finite element formulations for incompressible flow computations, Adv. Appl. Mech., 28, 1-44 (1992) · Zbl 0747.76069
[35] Tezduyar, T. E.; Behr, M.; Mittal, S.; Johnson, A. A., New Methods in Transient Analysis, 143, 7-24 (1992)
[36] Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Mittal, S., Parallel finite-element computation of 3D flows, Computer, 26, 27-36 (1993)
[37] Johnson, A. A.; Tezduyar, T. E., Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces, Comput. Methods Appl. Mech. Eng., 119, 73-94 (1994) · Zbl 0848.76036
[38] Stein, K.; Tezduyar, T.; Benney, R., Mesh moving techniques for fluid-structure interactions with large displacements, J. Appl. Mech., 70, 58-63 (2003) · Zbl 1110.74689
[39] Tezduyar, T. E.; Stein, E.; Borst, R. D.; Hughes, T. J. R., Encyclopedia of Comput. Mech., 3 (2004)
[40] Tezduyar, T. E.; Sathe, S.; Keedy, R.; Stein, K., Space-time finite element techniques for computation of fluid-structure interactions, Comput. Methods Appl. Mech. Eng., 195, 2002-2027 (2006) · Zbl 1118.74052
[41] Tezduyar, T. E.; Sathe, S., Modeling of fluid-structure interactions with the space-time finite elements: Solution techniques, Int. J. Numer. Methods Fluids, 54, 855-900 (2007) · Zbl 1144.74044
[42] Tezduyar, T. E., Computation of moving boundaries and interfaces and stabilization parameters, Int. J. Numer. Methods Fluids, 43, 555-575 (2003) · Zbl 1032.76605
[43] Takizawa, K.; Tezduyar, T. E., Multiscale space-time fluid-structure interaction techniques, Comput. Mech., 48, 247-267 (2011) · Zbl 1398.76128
[44] Takizawa, K.; Tezduyar, T. E., Space-time fluid-structure interaction methods, Math. Models Methods Appl. Sci., 22, 1230001 (2012) · Zbl 1248.76118
[45] Takizawa, K.; Tezduyar, T. E.; Kuraishi, T., Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires, Math. Models Methods Appl. Sci., 25, 2227-2255 (2015) · Zbl 1325.76139
[46] Hughes, T. J. R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Eng., 127, 387-401 (1995) · Zbl 0866.76044
[47] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Hughes, T. J. R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Eng., 197, 173-201 (2007) · Zbl 1169.76352
[48] Bazilevs, Y.; Akkerman, I., Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method, J. Comput. Phys., 229, 3402-3414 (2010) · Zbl 1290.76037
[49] Tezduyar, T. E.; Takizawa, K., Space-time computations in practical engineering applications: A summary of the 25-year history, Comput. Mech. (2018)
[50] Takizawa, K.; Tezduyar, T. E., Computational methods for parachute fluid-structure interactions, Arch. Comput. Methods Eng., 19, 125-169 (2012) · Zbl 1354.76113
[51] Takizawa, K.; Fritze, M.; Montes, D.; Spielman, T.; Tezduyar, T. E., Fluid-structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity, Comput. Mech., 50, 835-854 (2012)
[52] Takizawa, K.; Tezduyar, T. E.; Boben, J.; Kostov, N.; Boswell, C.; Buscher, A., Fluid-structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity, Comput. Mech., 52, 1351-1364 (2013) · Zbl 1398.74097
[53] Takizawa, K.; Tezduyar, T. E.; Boswell, C.; Tsutsui, Y.; Montel, K., Special methods for aerodynamic-moment calculations from parachute FSI modeling, Comput. Mech., 55, 1059-1069 (2015)
[54] Takizawa, K.; Montes, D.; Fritze, M.; Mcintyre, S.; Boben, J.; Tezduyar, T. E., Methods for FSI modeling of spacecraft parachute dynamics and cover separation, Math. Models Methods Appl. Sci., 23, 307-338 (2013) · Zbl 1261.76013
[55] Takizawa, K.; Tezduyar, T. E.; Boswell, C.; Kolesar, R.; Montel, K., FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes, Comput. Mech., 54, 1203-1220 (2014)
[56] Takizawa, K.; Tezduyar, T. E.; Kolesar, R.; Boswell, C.; Kanai, T.; Montel, K., Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes, Comput. Mech., 54, 1461-1476 (2014) · Zbl 1309.74025
[57] Takizawa, K.; Tezduyar, T. E.; Kolesar, R., FSI modeling of the Orion spacecraft drogue parachutes, Comput. Mech., 55, 1167-1179 (2015) · Zbl 1325.74169
[58] Takizawa, K.; Henicke, B.; Puntel, A.; Spielman, T.; Tezduyar, T. E., Space-time computational techniques for the aerodynamics of flapping wings, J. Appl. Mech., 79, 010903 (2012)
[59] Takizawa, K.; Henicke, B.; Puntel, A.; Kostov, N.; Tezduyar, T. E., Space-time techniques for computational aerodynamics modeling of flapping wings of an actual locust, Comput. Mech., 50, 743-760 (2012) · Zbl 1286.76179
[60] Takizawa, K.; Henicke, B.; Puntel, A.; Kostov, N.; Tezduyar, T. E., Computer modeling techniques for flapping-wing aerodynamics of a locust, Comput. Fluids, 85, 125-134 (2013) · Zbl 1290.76170
[61] Takizawa, K.; Kostov, N.; Puntel, A.; Henicke, B.; Tezduyar, T. E., Space-time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle, Comput. Mech., 50, 761-778 (2012) · Zbl 1286.76180
[62] Takizawa, K.; Tezduyar, T. E.; Kostov, N., Sequentially-coupled space-time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV, Comput. Mech., 54, 213-233 (2014)
[63] Takizawa, K.; Tezduyar, T. E.; Buscher, A.; Asada, S., Space-time interface-tracking with topology change (ST-TC), Comput. Mech., 54, 955-971 (2014) · Zbl 1311.74045
[64] Takizawa, K.; Tezduyar, T. E.; Buscher, A., Space-time computational analysis of MAV flapping-wing aerodynamics with wing clapping, Comput. Mech., 55, 1131-1141 (2015)
[65] Takizawa, K.; Bazilevs, Y.; Tezduyar, T. E.; Long, C. C.; Marsden, A. L.; Schjodt, K., ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling, Math. Models Methods Appl. Sci., 24, 2437-2486 (2014) · Zbl 1296.76113
[66] Takizawa, K.; Schjodt, K.; Puntel, A.; Kostov, N.; Tezduyar, T. E., Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent, Comput. Mech., 50, 675-686 (2012) · Zbl 1311.76157
[67] Takizawa, K.; Schjodt, K.; Puntel, A.; Kostov, N.; Tezduyar, T. E., Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms, Comput. Mech., 51, 1061-1073 (2013) · Zbl 1366.76106
[68] Suito, H.; Takizawa, K.; Huynh, V. Q. H.; Sze, D.; Ueda, T., FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta, Comput. Mech., 54, 1035-1045 (2014) · Zbl 1311.74044
[69] Suito, H.; Takizawa, K.; Huynh, V. Q. H.; Sze, D.; Ueda, T.; Tezduyar, T. E.; Bazilevs, Y.; Takizawa, K., Advances in Computational Fluid-Structure Interaction and Flow Simulation: New Methods and Challenging Computations, 379-386 (2016) · Zbl 1356.76471
[70] Takizawa, K.; Tezduyar, T. E.; Uchikawa, H.; Terahara, T.; Sasaki, T.; Shiozaki, K.; Yoshida, A.; Komiya, K.; Inoue, G.; Tezduyar, T. E., Frontiers in Computational Fluid-Structure Interaction and Flow Simulation: Research from Lead Investigators Under Forty — 2018, 29-89 (2018)
[71] Takizawa, K.; Tezduyar, T. E.; Uchikawa, H.; Terahara, T.; Sasaki, T.; Yoshida, A., Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization, Comput. Fluids (2018) · Zbl 1411.76184
[72] Takizawa, K.; Tezduyar, T. E.; Buscher, A.; Asada, S., Space-time fluid mechanics computation of heart valve models, Comput. Mech., 54, 973-986 (2014) · Zbl 1311.74083
[73] Takizawa, K.; Tezduyar, T. E.; Bazilevs, Y.; Takizawa, K., Advances in Computational Fluid-Structure Interaction and Flow Simulation: New Methods and Challenging Computations, 159-178 (2016) · Zbl 1356.76291
[74] Takizawa, K.; Tezduyar, T. E.; Terahara, T.; Sasaki, T.; Wriggers, P.; Lenarz, T., Biomedical Technology: Modeling, Experiments and Simulation, 77-99 (2018)
[75] Takizawa, K.; Tezduyar, T. E.; Terahara, T.; Sasaki, T., Heart valve flow computation with the integrated space-time VMS, slip interface, topology change and isogeometric discretization methods, Comput. Fluids, 158, 176-188 (2017) · Zbl 1390.76944
[76] Takizawa, K.; Montes, D.; Mcintyre, S.; Tezduyar, T. E., Space-time VMS methods for modeling of incompressible flows at high Reynolds numbers, Math. Models Methods Appl. Sci., 23, 223-248 (2013) · Zbl 1261.76037
[77] Takizawa, K.; Tezduyar, T. E.; Kuraishi, T.; Tabata, S.; Takagi, H., Computational thermo-fluid analysis of a disk brake, Comput. Mech., 57, 965-977 (2016) · Zbl 1382.74044
[78] Takizawa, K.; Tezduyar, T. E.; Asada, S.; Kuraishi, T., Space-time method for flow computations with slip interfaces and topology changes (ST-SI-TC), Comput. Fluids, 141, 124-134 (2016) · Zbl 1390.76358
[79] Kuraishi, T.; Takizawa, K.; Tezduyar, T. E.; Tezduyar, T. E., Frontiers in Computational Fluid-Structure Interaction and Flow Simulation: Research from Lead Investigators Under Forty — 2018, 337-376 (2018) · Zbl 1406.76003
[80] Kuraishi, T.; Takizawa, K.; Tezduyar, T. E., Tire aerodynamics with actual tire geometry, road contact and tire deformation, Comput. Mech. (2018) · Zbl 07053716
[81] Takizawa, K.; Tezduyar, T. E.; Terahara, T., Ram-air parachute structural and fluid mechanics computations with the space-time isogeometric analysis (ST-IGA), Comput. Fluids, 141, 191-200 (2016) · Zbl 1390.76359
[82] Takizawa, K.; Tezduyar, T. E.; Kanai, T., Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity, Math. Models Methods Appl. Sci., 27, 771-806 (2017) · Zbl 1361.76017
[83] Kanai, T.; Takizawa, K.; Tezduyar, T. E.; Tanaka, T.; Hartmann, A., Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization, Comput. Mech., 63, 301-321 (2019) · Zbl 07037442
[84] Bazilevs, Y.; Calo, V. M.; Hughes, T. J. R.; Zhang, Y., Isogeometric fluid-structure interaction: Theory, algorithms and computations, Comput. Mech., 43, 3-37 (2008) · Zbl 1169.74015
[85] Takizawa, K.; Bazilevs, Y.; Tezduyar, T. E., Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling, Arch. Comput. Methods Eng., 19, 171-225 (2012) · Zbl 1354.92023
[86] Bazilevs, Y.; Hsu, M.-C.; Takizawa, K.; Tezduyar, T. E., ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction, Math. Models Methods Appl. Sci., 22, 1230002 (2012) · Zbl 1404.76187
[87] Bazilevs, Y.; Takizawa, K.; Tezduyar, T. E., Challenges and directions in computational fluid-structure interaction, Math. Models Methods Appl. Sci., 23, 215-221 (2013) · Zbl 1261.76025
[88] Bazilevs, Y.; Takizawa, K.; Tezduyar, T. E., New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods, Math. Models Methods Appl. Sci., 25, 2217-2226 (2015) · Zbl 1329.76007
[89] Kalro, V.; Tezduyar, T. E., A parallel 3D computational method for fluid-structure interactions in parachute systems, Comput. Methods Appl. Mech. Eng., 190, 321-332 (2000) · Zbl 0993.76044
[90] Bazilevs, Y.; Calo, V. M.; Zhang, Y.; Hughes, T. J. R., Isogeometric fluid-structure interaction analysis with applications to arterial blood flow, Comput. Mech., 38, 310-322 (2006) · Zbl 1161.74020
[91] Bazilevs, Y.; Gohean, J. R.; Hughes, T. J. R.; Moser, R. D.; Zhang, Y., Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device, Comput. Methods Appl. Mech. Eng., 198, 3534-3550 (2009) · Zbl 1229.74096
[92] Bazilevs, Y.; Hsu, M.-C.; Benson, D.; Sankaran, S.; Marsden, A., Computational fluid-structure interaction: Methods and application to a total cavopulmonary connection, Comput. Mech., 45, 77-89 (2009) · Zbl 1398.92056
[93] Bazilevs, Y.; Hsu, M.-C.; Zhang, Y.; Wang, W.; Liang, X.; Kvamsdal, T.; Brekken, R.; Isaksen, J., A fully-coupled fluid-structure interaction simulation of cerebral aneurysms, Comput. Mech., 46, 3-16 (2010) · Zbl 1301.92014
[94] Bazilevs, Y.; Hsu, M.-C.; Zhang, Y.; Wang, W.; Kvamsdal, T.; Hentschel, S.; Isaksen, J., Computational fluid-structure interaction: Methods and application to cerebral aneurysms, Biomech. Model. Mechanobiol., 9, 481-498 (2010)
[95] Hsu, M.-C.; Bazilevs, Y., Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations, Finite Elem. Anal. Des., 47, 593-599 (2011)
[96] Long, C. C.; Marsden, A. L.; Bazilevs, Y., Fluid-structure interaction simulation of pulsatile ventricular assist devices, Comput. Mech., 52, 971-981 (2013) · Zbl 1388.74039
[97] Long, C. C.; Esmaily-Moghadam, M.; Marsden, A. L.; Bazilevs, Y., Computation of residence time in the simulation of pulsatile ventricular assist devices, Comput. Mech., 54, 911-919 (2014) · Zbl 1311.74041
[98] Long, C. C.; Marsden, A. L.; Bazilevs, Y., Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk, Comput. Mech., 54, 921-932 (2014) · Zbl 1314.74056
[99] Hsu, M.-C.; Kamensky, D.; Bazilevs, Y.; Sacks, M. S.; Hughes, T. J. R., Fluid-structure interaction analysis of bioprosthetic heart valves: Significance of arterial wall deformation, Comput. Mech., 54, 1055-1071 (2014) · Zbl 1311.74039
[100] Hsu, M.-C.; Kamensky, D.; Xu, F.; Kiendl, J.; Wang, C.; Wu, M. C. H.; Mineroff, J.; Reali, A.; Bazilevs, Y.; Sacks, M. S., Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models, Comput. Mech., 55, 1211-1225 (2015) · Zbl 1325.74048
[101] Kamensky, D.; Hsu, M.-C.; Schillinger, D.; Evans, J. A.; Aggarwal, A.; Bazilevs, Y.; Sacks, M. S.; Hughes, T. J. R., An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves, Comput. Methods Appl. Mech. Eng., 284, 1005-1053 (2015) · Zbl 1423.74273
[102] Akkerman, I.; Bazilevs, Y.; Benson, D. J.; Farthing, M. W.; Kees, C. E., Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics, J. Appl. Mech., 79, 010905 (2012)
[103] Akkerman, I.; Dunaway, J.; Kvandal, J.; Spinks, J.; Bazilevs, Y., Toward free-surface modeling of planing vessels: Simulation of the Fridsma hull using ALE-VMS, Comput. Mech., 50, 719-727 (2012)
[104] Wang, C.; Wu, M. C. H.; Xu, F.; Hsu, M.-C.; Bazilevs, Y., Modeling of a hydraulic arresting gear using fluid-structure interaction and isogeometric analysis, Comput. Fluids, 142, 3-14 (2017) · Zbl 1390.76013
[105] Wu, M. C. H.; Kamensky, D.; Wang, C.; Herrema, A. J.; Xu, F.; Pigazzini, M. S.; Verma, A.; Marsden, A. L.; Bazilevs, Y.; Hsu, M.-C., Optimizing fluid-structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear, Comput. Methods Appl. Mech. Eng., 316, 668-693 (2017)
[106] Augier, B.; Yan, J.; Korobenko, A.; Czarnowski, J.; Ketterman, G.; Bazilevs, Y., Experimental and numerical FSI study of compliant hydrofoils, Comput. Mech., 55, 1079-1090 (2015)
[107] Yan, J.; Augier, B.; Korobenko, A.; Czarnowski, J.; Ketterman, G.; Bazilevs, Y., FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration, Comput. Fluids, 141, 201-211 (2016) · Zbl 1390.76375
[108] Helgedagsrud, T. A.; Bazilevs, Y.; Mathisen, K. M.; Oiseth, O. A., Computational and experimental investigation of free vibration and flutter of bridge decks, Comput. Mech., 63, 121-136 (2019) · Zbl 07024101
[109] Helgedagsrud, T. A.; Bazilevs, Y.; Korobenko, A.; Mathisen, K. M.; Oiseth, O. A., Using ALE-VMS to compute aerodynamic derivatives of bridge sections, Comput. Fluids (2018) · Zbl 1411.74029
[110] Helgedagsrud, T. A.; Akkerman, I.; Bazilevs, Y.; Mathisen, K. M.; Oiseth, O. A., Isogeometric modeling and experimental investigation of moving-domain bridge aerodynamics, ASCE J. Eng. Mech., 145, 04019026 (2019)
[111] Kamensky, D.; Evans, J. A.; Hsu, M.-C.; Bazilevs, Y., Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid-thin structure interaction analysis, with application to heart valve modeling, Comput. Math. Appl., 74, 2068-2088 (2017) · Zbl 1397.65274
[112] Yu, Y.; Kamensky, D.; Hsu, M.-C.; Lu, X. Y.; Bazilevs, Y.; Hughes, T. J. R., Error estimates for projection-based dynamic augmented Lagrangian boundary condition enforcement, with application to fluid-structure interaction, Math. Models Methods Appl. Sci., 28, 2457-2509 (2018) · Zbl 1411.74059
[113] Tezduyar, T. E.; Takizawa, K.; Moorman, C.; Wright, S.; Christopher, J., Space-time finite element computation of complex fluid-structure interactions, Int. J. Numer. Methods Fluids, 64, 1201-1218 (2010) · Zbl 1427.76148
[114] Yan, J.; Korobenko, A.; Tejada-Martinez, A. E.; Golshan, R.; Bazilevs, Y., A new variational multiscale formulation for stratified incompressible turbulent flows, Comput. Fluids, 158, 150-156 (2017) · Zbl 1390.76107
[115] Van Opstal, T. M.; Yan, J.; Coley, C.; Evans, J. A.; Kvamsdal, T.; Bazilevs, Y., Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows, Comput. Methods Appl. Mech. Eng., 316, 859-879 (2017)
[116] Tezduyar, T. E.; Park, Y. J., Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations, Comput. Methods Appl. Mech. Eng., 59, 307-325 (1986) · Zbl 0593.76096
[117] Corsini, A.; Rispoli, F.; Santoriello, A.; Tezduyar, T. E., Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation, Comput. Mech., 38, 356-364 (2006) · Zbl 1177.76192
[118] Corsini, A.; Menichini, C.; Rispoli, F.; Santoriello, A.; Tezduyar, T. E., A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms, J. Appl. Mech., 76, 021211 (2009)
[119] Corsini, A.; Iossa, C.; Rispoli, F.; Tezduyar, T. E., A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors, Comput. Mech., 46, 159-167 (2010) · Zbl 1301.76045
[120] Corsini, A.; Rispoli, F.; Tezduyar, T. E., Stabilized finite element computation of NOx emission in aero-engine combustors, Int. J. Numer. Methods Fluids, 65, 254-270 (2011) · Zbl 1426.76240
[121] Rispoli, F.; Saavedra, R.; Menichini, F.; Tezduyar, T. E., Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZβ shock-capturing, J. Appl. Mech., 76, 021209 (2009)
[122] Hsu, M.-C.; Bazilevs, Y.; Calo, V. M.; Tezduyar, T. E.; Hughes, T. J. R., Improving stability of stabilized and multiscale formulations in flow simulations at small time steps, Comput. Methods Appl. Mech. Eng., 199, 828-840 (2010) · Zbl 1406.76028
[123] Corsini, A.; Rispoli, F.; Tezduyar, T. E., Computer modeling of wave-energy air turbines with the SUPG/PSPG formulation and discontinuity-capturing technique, J. Appl. Mech., 79, 010910 (2012)
[124] Corsini, A.; Rispoli, F.; Sheard, A. G.; Tezduyar, T. E., Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations, Comput. Mech., 50, 695-705 (2012) · Zbl 1311.76121
[125] Kler, P. A.; Dalcin, L. D.; Paz, R. R.; Tezduyar, T. E., SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems, Comput. Mech., 51, 171-185 (2013) · Zbl 1312.76062
[126] Corsini, A.; Rispoli, F.; Sheard, A. G.; Takizawa, K.; Tezduyar, T. E.; Venturini, P., A variational multiscale method for particle-cloud tracking in turbomachinery flows, Comput. Mech., 54, 1191-1202 (2014) · Zbl 1311.76030
[127] Rispoli, F.; Delibra, G.; Venturini, P.; Corsini, A.; Saavedra, R.; Tezduyar, T. E., Particle tracking and particle-shock interaction in compressible-flow computations with the V-SGS stabilization and YZβ shock-capturing, Comput. Mech., 55, 1201-1209 (2015) · Zbl 1325.76121
[128] Takizawa, K.; Tezduyar, T. E.; Otoguro, Y., Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations, Comput. Mech., 62, 1169-1186 (2018) · Zbl 06981055
[129] Lira, C.; Scarpa, F.; Rajasekaran, R., A gradient cellular core for aeroengine fan blades based on auxetic configurations, J. Intell. Mater. Syst. Struct., 22, 907-917 (2011)
[130] Fortini, A.; Suman, A.; Aldi, N.; Merlin, M.; Pinelli, M., A shape memory alloy-based morphing axial fan bladepart I: Blade structure design and functional characterization, J. Eng. Gas Turbines Power, 138, 022601 (2016)
[131] Monner, H. P.; Huxdorf, O.; Riemenschneider, J.; Keimer, R., Design and manufacturing of morphing fan blades for experimental investigations in a cascaded wind tunnel, 23rd AIAA/AHS Adaptive Structures Conf. Number AIAA, 790 (2015)
[132] Corsini, A.; Castorrini, A.; Boezi, M.; Rispoli, F., Numerical study on active and passive trailing edge morphing applied to a multi-MW wind turbine section, 6th Int. Conf. Comput. Methods Marine Engineering, MARINE 2015, 15-17 (2015)
[133] Lachenal, X.; Daynes, S.; Weaver, P. M., Review of morphing concepts and materials for wind turbine blade applications, Wind Energy, 16, 283-307 (2013)
[134] Ai, Q.; Azarpeyvand, M.; Lachenal, X.; Weaver, P. M., Aerodynamic and aeroacoustic performance of airfoils with morphing structures, Wind Energy, 19, 1325-1339 (2016)
[135] Castorrini, A.; Corsini, A.; Sheard, A.; Rispoli, F., Numerical study on the passive control of the aeroelastic response in large axial fans, ASME Turbo Expo 2016: Turbomachinery Technical Conf. and Exposition (2016)
[136] Gern, F. H.; Inman, D. J.; Kapania, R. K., Structural and aeroelastic modeling of general planform wings with morphing airfoils, AIAA J., 40, 628-637 (2002)
[137] Barbarino, S.; Gandhi, F.; Webster, S. D., Design of extendable chord sections for morphing helicopter rotor blades, J. Intell. Mater. Syst. Struct., 22, 891-905 (2011)
[138] Corsini, A.; Rispoli, F., Flow analyses in a high-pressure axial ventilation fan with a non-linear eddy viscosity closure, Int. J. Heat Fluid Flow, 17, 108-155 (2005)
[139] Craft, T.; Launder, B.; Suga, K., Development and application of a cubic eddy-viscosity model of turbulence, Int. J. Heat Fluid Flow, 17, 108-115 (1996)
[140] Castorrini, A.; Corsini, A.; Rispoli, F.; Venturini, P.; Takizawa, K.; Tezduyar, T. E.; Bazilevs, Y.; Takizawa, K., Advances in Computational Fluid-Structure Interaction and Flow Simulation: New Methods and Challenging Computations, 77-96 (2016) · Zbl 1356.76160
[141] Castorrini, A.; Corsini, A.; Rispoli, F.; Venturini, P.; Takizawa, K.; Tezduyar, T. E., Computational analysis of wind-turbine blade rain erosion, Comput. Fluids, 141, 175-183 (2016) · Zbl 1390.76298
[142] Rispoli, F.; Corsini, A.; Tezduyar, T. E., Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD), Comput. Fluids, 36, 121-126 (2007) · Zbl 1181.76098
[143] Tezduyar, T. E.; Takizawa, K.; Bazilevs, Y.; Stein, E.; Borst, R. D.; Hughes, T. J. R., Encyclopedia of Computational Mechanics (2017)
[144] Castorrini, A.; Corsini, A.; Sheard, A.; Rispoli, F.; Lamperini, M., Fluid-structure interaction study of large and light axial fan blade, ASME Turbo Expo 2017: Turbomachinery Technical Conf. and Exposition (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.