×

zbMATH — the first resource for mathematics

Nonintegrable spatial discrete nonlocal nonlinear Schrödinger equation. (English) Zbl 1425.35179
Summary: Integrable and nonintegrable discrete nonlinear Schrödinger equations (NLS) are significant models to describe many phenomena in physics. Recently, Ablowitz and Musslimani introduced a class of reverse space, reverse time, and reverse space-time nonlocal integrable equations, including the nonlocal NLS equation, nonlocal sine-Gordon equation, nonlocal Davey-Stewartson equation, etc. Moreover, the integrable nonlocal discrete NLS has been exactly solved by inverse scattering transform. In this paper, we study a nonintegrable discrete nonlocal NLS, which is a direct discrete version of the reverse space nonlocal NLS. By applying discrete Fourier transform and modified Neumann iteration, we present its stationary solutions numerically. The linear stability of the stationary solutions is examined. Finally, we study the Cauchy problem for the nonlocal NLS equation numerically and find some different and new properties on the numerical solutions comparing with the numerical solutions of the Cauchy problem for the NLS equation.
©2019 American Institute of Physics

MSC:
35Q55 NLS equations (nonlinear Schrödinger equations)
39A12 Discrete version of topics in analysis
Software:
dverk
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Sulem, C.; Sulem, P.-L., The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse (2007)
[2] Rypdal, K.; Rasmussen, J. J.; Thomsen, K., Similarity structure of wave-collapse, Physica D, 16, 339-357 (1985) · Zbl 0584.35095
[3] Rasmussen, J. J.; Rypdal, K., Blow-up in nonlinear Schrödinger equations-I. A general review, Phys. Scr., 33, 481-497 (1986) · Zbl 1063.35545
[4] Rypdal, K.; Rasmussen, J. J., Blow-up in nonlinear Schrödinger equations-II. Similarity structure of the blow-up singularity, Phys. Scr., 33, 498-504 (1986) · Zbl 1063.35546
[5] Ablowitz, M. J.; Biondini, G., Multiscale pulse dynamics in communication systems with strong dispersion management, Opt. Lett., 23, 1668-1670 (1998)
[6] Ablowitz, M. J.; Prinari, B.; Trubatch, A. D., Discrete and Continuous Nonlinear Schrödinger Systems (2004) · Zbl 1057.35058
[7] Pelinovsky, D. E., Translationally invariant nonlinear Schrödinger lattices, Nonlinearity, 19, 2695-2716 (2006) · Zbl 1111.39014
[8] Yang, J., Nonlinear Waves in Integrable and Nonintegrable Systems (2010) · Zbl 1234.35006
[9] Hasegawa, A.; Tappert, F., Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion, Appl. Phys. Lett., 23, 142-144 (1973)
[10] Hasegawa, A.; Tappert, F., Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion, Appl. Phys. Lett., 23, 171-172 (1973)
[11] Zvezdin, A. K.; Popkov, A. F., Contribution to the nonlinear theory of magnetostatic spin waves, Sov. Phys. JETP, 57, 350-355 (1983)
[12] Peregrine, D., Water waves, nonlinear Schrödinger equations and their solutions, J. Austral. Math. Soc. Ser. B, 25, 16-43 (1983) · Zbl 0526.76018
[13] Benney, D.; Newell, A., The propagation of nonlinear wave envelopes, J. Math. Phys., 46, 133-139 (1967) · Zbl 0153.30301
[14] Zakharov, V. E., Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9, 190-194 (1968)
[15] Benney, D.; Roskes, G. J., Wave instabilities, Stud. Appl. Math., 48, 377-385 (1969) · Zbl 0216.52904
[16] Zakharov, V. E., Collapse of Langmuir waves, Sov. Phys. JETP, 35, 908-914 (1972)
[17] Zakharov, V.; Shabat, A., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP, 34, 62-69 (1972)
[18] Zakharov, V.; Shabat, A., Interaction between solitons in a stable medium, Sov. Phys. JETP, 37, 823-828 (1973)
[19] Ablowitz, M. J.; Ladik, J. F., Nonlinear differential-difference equations, J. Math. Phys., 16, 598-603 (1975) · Zbl 0296.34062
[20] Ablowitz, M. J.; Ladik, J. F., Nonlinear differential-difference equations and Fourier analysis, J. Math. Phys., 17, 1011-1018 (1976) · Zbl 0322.42014
[21] Chowdhury, A. R.; Mahato, G., A Darboux-Bäcklund transformation associated with a discrete nonlinear Schrödinger equation, Lett. Math. Phys., 7, 313-317 (1983) · Zbl 0551.35074
[22] Hennig, D., Spatial properties of integrable and nonintegrable discrete nonlinear Schrödinger equations, Phys. Rev. E, 52, 255-269 (1995)
[23] Kevrekidis, P. G.; Rasmussen, K. Ø.; Bishop, A. R., The discrete nonlinear Schrödinger equation: A survey of recent results, Int. J. Mod. Phys. B, 15, 2833-2900 (2001)
[24] Herbst, B. M.; Ablowitz, M. J., Numerically induced chaos in the nonlinear Schrödinger equation, Phys. Rev. Lett., 62, 2065-2068 (1989)
[25] Kopidakis, G.; Aubry, S.; Tsironis, G., Targeted energy transfer through discrete breathers in nonlinear systems, Phys. Rev. Lett., 87, 165501 (2001)
[26] Fleischer, J. W., Observation of discrete solitons in optically induced real time waveguide arrays, Phys. Rev. Lett., 90, 023902 (2003)
[27] Fleischer, J. W., Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature, 422, 147-150 (2003)
[28] Kivshar, Y. S.; Agrawal, G., Optical Solitons: From Fibers to Photonic Crystals (2003)
[29] Ablowitz, M. J.; Musslimani, Z. H.; Biondini, G., Methods for discrete solitons in nonlinear lattices, Phys. Rev. E, 65, 026602 (2002)
[30] Ablowitz, M. J.; Musslimani, Z. H., Integrable nonlocal nonlinear Schrödinger equation, Phys. Rev. Lett., 110, 064105 (2013)
[31] Ablowitz, M. J.; Musslimani, Z. H., Integrable nonlocal nonlinear equations, Stud. Appl. Math., 139, 7-59 (2017) · Zbl 1373.35281
[32] Ablowitz, M. J.; Musslimani, Z. H., Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation, Nonlinearity, 29, 915-946 (2016) · Zbl 1338.37099
[33] Li, M.; Xu, T., Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential, Phys. Rev. E, 91, 033202 (2015)
[34] Li, M.; Xu, T.; Meng, D., Rational solitons in the parity-time-symmetric nonlocal nonlinear Schrödinger model, J. Phys. Soc. Jpn., 85, 124001 (2016)
[35] Wen, X.-Y.; Yan, Z.; Yang, Y., Dynamics of higher-order rational solitons for the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential, Chaos, 26, 063123 (2016)
[36] Gupta, S. K.; Sarma, A. K., Peregrine rogue wave dynamics in the continuous nonlinear Schrödinger system with parity-time symmetric Kerr nonlinearity, Commun. Nonlinear Sci. Numer. Simul., 36, 141-147 (2016)
[37] Ma, L.; Zhu, Z., Nonlocal nonlinear Schrödinger equation and its discrete version: Soliton solutions and gauge equivalence, J. Math. Phys., 57, 083507 (2016) · Zbl 1352.35163
[38] Gadzhimuradov, T. A.; Agalarov, A. M., Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation, Phys. Rev. A, 93, 062124 (2016)
[39] Fokas, A., Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation, Nonlinearity, 29, 319-324 (2016) · Zbl 1339.37066
[40] Ablowitz, M. J.; Musslimani, Z. H., Integrable discrete PT symmetric model, Phys. Rev. E, 90, 032912 (2014)
[41] Ma, L.; Zhu, Z., \( <mml:math display=''inline`` overflow=''scroll``> \)-soliton solution for an integrable nonlocal discrete focusing nonlinear Schrödinger equation, Appl. Math. Lett., 59, 115-121 (2016) · Zbl 1342.35346
[42] Petviashvili, V., Equation of an extraordinary soliton, Sov. J. Plasma Phys., 2, 469-472 (1976)
[43] Huang, X.; Ling, L. M., Soliton solutions for the nonlocal nonlinear Schrödinger equation, Eur. Phys. J. Plus, 131, 148 (2016)
[44] Eilbeck, J. C.; Lomdahl, P.; Scott, A., The discrete self-trapping equation, Physica D, 16, 318-338 (1985) · Zbl 0583.34026
[45] Enright, W. W. H.; Hull, T.; Jackson, K., User’s Guide for DVERK: A Subroutine for Solving Non-Stiff ODE’s (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.