A posteriori error estimation in model order reduction of elastic multibody systems with large rigid motion. (English) Zbl 1425.74452

Fehr, Jörg (ed.) et al., IUTAM symposium on model order reduction of coupled systems. MORCOS 2018. Proceedings of the IUTAM symposium, Stuttgart, Germany, May 22–25, 2018. Cham: Springer. IUTAM Bookser. 36, 95-110 (2020).
Summary: We consider the equation of motion of an elastic multibody system in absolute coordinate formulation (ACF). The resulting nonlinear second order DAE of index two has a unique solution and is reduced using the strong POD-greedy method. The reduced model is certified by deriving a posteriori error estimators, which are independent of the model order reduction (MOR) method used to obtain the projection basis. The first error estimation technique, which we establish in this paper, is a first order linear integro-differential equation. It relies on the gradient of a function and can be integrated along with the reduced simulation (in-situ). The second error estimation technique is hierarchical and requires a more enriched basis in order to estimate the error in the solution due to a coarser basis. To verify and illustrate the efficacy of the estimators, reproductive and predictive numerical experiments are performed on a coupled elastic multibody system consisting of a double elastic pendulum.
For the entire collection see [Zbl 1425.93009].


74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs


Full Text: DOI


[1] Antoulas, A.: Approximation of Large-Scale Dynamical Systems. SIAM Publications, Philadelphia, PA (2005) · Zbl 1112.93002
[2] Banagaaya, N., Alì, G., Schilders, W.: Index-aware model order reduction. In: Index-Aware Model Order Reduction Methods, pp. 61-70. Springer (2016)
[3] Barrault, M., Maday, Y., Nguyen, N., Patera, A.: An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus de l’Académie des Sciences, Series I(339), 667-672 (2004) · Zbl 1061.65118
[4] Benner, P., Stykel, T.: Model order reduction for differential-algebraic equations: a survey. In: Surveys in Differential-Algebraic Equations IV, pp. 107-160. Springer (2017) · Zbl 1402.93069
[5] Bhatt, A., Fehr, J., Haasdonk, B.: Model order reduction of an elastic body under large rigid motion. In: Proceedings of ENUMATH 2017, Voss, Norway (2018) · Zbl 1425.74453
[6] Carlberg, K., Farhat, C., Cortial, J., Amsallem, D.: The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput. Phys. 242, 623-647 (2013) · Zbl 1299.76180
[7] Chaturantabut, S., Sorensen, D.C.: Discrete empirical interpolation for nonlinear model reduction. SIAM J. Sci. Comput. 32(5), 2737-2764 (2010) · Zbl 1217.65169
[8] Dattorro, J.: Convex Optimization & Euclidean Distance Geometry. Meboo Publishing USA (2010) · Zbl 1142.15014
[9] Farhat, C., Avery, P., Chapman, T., Cortial, J.: Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. Int. J. Numer. Meth. Eng. 98(9), 625-662 (2014) · Zbl 1352.74348
[10] Fehr, J.: Automated and error-controlled model reduction in elastic multibody systems. Ph.D. thesis, University of Stuttgart (2011)
[11] Fehr, J., Grunert, D., Bhatt, A., Haasdonk, B.: A sensitivity study of error estimation in reduced elastic multibody systems. In: Proceedings of MATHMOD 2018, Vienna, Austria (2018)
[12] Gelmi, C.A., Jorquera, H.: IDSOLVER: a general purpose solver for nth-order integro-differential equations. Comput. Phys. Commun. 185(1), 392-397 (2014) · Zbl 1344.45001
[13] Gerstmayr, J., Ambrósio, J.: Component mode synthesis with constant mass and stiffness matrices applied to flexible multibody systems. Int. J. Numer. Meth. Eng. 73(11), 1518-1546 (2008) · Zbl 1162.74019
[14] Gerstmayr, J., Schöberl, J.: A 3D finite element method for flexible multibody systems. Multibody Syst. Dyn. 15(4), 305-320 (2006) · Zbl 1146.70318
[15] Grundel, S., Jansen, L., Hornung, N., Clees, T., Tischendorf, C., Benner, P.: Model order reduction of differential algebraic equations arising from the simulation of gas transport networks. In: Progress in Differential-Algebraic Equations, pp. 183-205. Springer (2014) · Zbl 1319.65077
[16] Haasdonk, B.: Reduced basis methods for parametrized PDEs—a tutorial introduction for stationary and instationary problems. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) Model Reduction and Approximation: Theory and Algorithms, pp. 65-136. SIAM, Philadelphia (2017)
[17] Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM: M2AN. 42(2), 277-302 (2008) · Zbl 1388.76177
[18] Haasdonk, B., Ohlberger, M.: Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition. Math. Comput. Model. Dyn. Syst. 17(2), 145-161 (2011) · Zbl 1230.37110
[19] Hain, S., Ohlberger, M., Radic, M., Urban, K.: A hierarchical a-posteriori error estimator for the reduced basis method. arXiv preprint arXiv:1802.03298 (2018)
[20] Hesthaven, J., Rozza, G., Stamm, B.: Certified reduced basis methods for parametrized partial differential equations. In: SpringerBriefs in Mathematics (2016) · Zbl 1329.65203
[21] Hughes, T.J., Hulbert, G.M.: Space-time finite element methods for elastodynamics: formulations and error estimates. Comput. Meth. Appl. Mech. Eng. 66(3), 339-363 (1988) · Zbl 0616.73063
[22] Lakshmikantham, V., Leela, S.: Differential and integral inequalities. Acad. Press, New York (1969) · Zbl 0177.12403
[23] Lanczos, C.: The Variational Principles of Mechanics. Courier Corporation (2012) · Zbl 0138.19706
[24] Petrovitsch, M.: Sur une manière d’étendre le théorème de la moyence aux équations différentielles du premier ordre. Math. Ann. 54(3), 417-436 (1901) · JFM 32.0336.01
[25] Rheinboldt, W.C.: On the existence and uniqueness of solutions of nonlinear semi-implicit differential-algebraic equations. Nonlinear Anal.: Theory Meth. Appl. 16(7-8), 647-661 (1991) · Zbl 0722.34044
[26] Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Meth. Eng. 15(3), 229-275 (2008) · Zbl 1304.65251
[27] Ruiner, T., Fehr, J., Haasdonk, B., Eberhard, P.: A-posteriori error estimation for second order mechanical systems. Acta Mechanica Sinica 28(3), 854-862 (2012) · Zbl 1345.70051
[28] Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press (2013) · Zbl 1291.70002
[29] Volkwein, S.: Model reduction using proper orthogonal decomposition. In: Lecture Notes. University of Konstanz (2011)
[30] Wirtz, D., Sorensen, D., Haasdonk, B.: A posteriori error estimation for DEIM reduced nonlinear dynamical systems. SIAM J. Sci. Comput. 36(2), A311-A338 (2014) · Zbl 1312.65127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.