×

Note on a paper of Sharif and Woodcock. (Note sur un article de Sharif et Woodcock.) (French) Zbl 0714.12006

The title concerns the article by H. Sharif and C. F. Woodcock, J. Lond. Math. Soc., II. Ser. 37, No. 3, 395–403 (1988; Zbl 0612.12018).
The aim of this paper is to review recent works about algebraic power series. More precisely, let \(k\) be a field of positive characteristic \(p\). It is shown that a power series in \(k[[x_ 1,...,x_ r]]\) is algebraic over \(k(x_ 1,...,x_ r)\) if and only if the sequence of its Taylor coefficients is generated by a \(p\)-substitution. As there are several variables and as the field is not finite, a generalisation of the notion of \(p^ k\)-substitution is needed. This generalisation, deeply connected with Schützenberger’s recognizability, is interesting by itself. Some applications are given, for instance diagonals of algebraic power series are proven to be algebraic, and many references are given.
The last part of the paper is devoted to prove algebraic independence over \(k(x_ 1,...,x_ r)\) of power series of the type \((1+f)^{\lambda}\) for algebraic \(f\) and \({\mathbb{Z}}\)-linearly independent \(\lambda\).
Reviewer: G.Christol

MSC:

12E99 General field theory
11B85 Automata sequences
11J81 Transcendence (general theory)
11J85 Algebraic independence; Gel’fond’s method
13F25 Formal power series rings

Citations:

Zbl 0612.12018
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] Allouche, J-P., Automates finis en théorie des Nombres, Expo. Math..5 (1987), 239-266. · Zbl 0641.10041
[2] Allouche, J-P., Mendès France, M., et van der POORTEN, A.J., Indépendance algébrique de certaines séries formelles, Bull. Soc. Math. France116 (1988), 449-454. · Zbl 0696.10031
[3] Bezivin, J-P.Communication privée.
[4] Christol, G., Ensembles presque périodiques k-reconnaissables, Theoretical Computer Science, 9 (1979), 141-145. · Zbl 0402.68044
[5] Christol, G., Fonctions et éléments algébriques, Pac. J. Math.1251 (1986), 1-37. · Zbl 0591.12018
[6] Christol, G., Diagonales de fractions rationnelles, Sém. de Théorie des Nombres de Paris (1986-1987), 65-90. Progress in Math., Birkhäuser. · Zbl 0694.13013
[7] Christol, G., Kamae, T., Mendès France, M. et Rauzy, G., Suites algébriques, automates et substitutions, Bull. Soc. Math. France, 108 (1980), 401-419. · Zbl 0472.10035
[8] Deligne, P., Intégration sur un cycle évanescent, Invent. Math.76 (1983), 129-143. · Zbl 0538.13007
[9] Denef, J. et Lipshitz, L., Algebraic power series and diagonals, J. Number Theory26 (1987), 46-67. · Zbl 0609.12020
[10] Fliess, M., Sur certaines familles de séries formelles, Thèse, ParisVII (1972).
[11] Fliess, M., Sur divers produits de séries formelles, Bull. Soc. Math. France102 (1974), 181-191. · Zbl 0313.13021
[12] Fresnel, J.Communication privée.
[13] Furstenberg, H., Algebraic functions over finite fields, J. Algebra7 (1967), 271-277. · Zbl 0175.03903
[14] Harase, T., Algebraic elements in formal power series rings, Israel Journal of Math.633 (1988), 281-288. · Zbl 0675.13015
[15] Henniart, G.Communication privée.
[16] Jungen, R., Sur les séries de Taylor n’ayant que des singularités algébrico-logarithmiques sur leur cercle de convergence, Comment. Math. Helv.3 (1931), 266-306.
[17] Liardet, P., Automata and generalized Rudin-Shapiro sequences, Salzburg Universitât (1986).
[18] Lipshitz, L. et van der POORTEN, A.J., Rational functions, diagonals, automata and arithmetic, in R.A. Mollin (ed.), First conference of the CanadianNumber Theory Association, Banff/Can. (1988). (de Gruyter1989). · Zbl 0694.10008
[19] Mendès France, M. et van der POORTEN, A.J., Automata and the arithmetic of formal power series, Acta Arith.46 (1986), 211-214. · Zbl 0599.12020
[20] van der POORTEN, A.J., Solution de la conjecture de Pisot sur le quotient de Hadamard de deux fractions rationnelles, C.R. Acad. Sci. Paris t. 306, Série I (1988), 97-102. · Zbl 0635.10007
[21] Pourchet, Y., Solution du problème arithmétique du quotient de Hadamard de deux fractions rationnelles, C.R. Acad. Sci. Paris t. 288, série A (1979), 1055-1057. · Zbl 0421.13005
[22] Rumely, R., Note on van der Poorten’s proof of the Hadamard quotient theorem (Part I and II),, Sém. de Théorie des Nombres de Paris (1986-1987), 349-409. Progress in Math., Birkhaüser. · Zbl 0661.10017
[23] Salon, O., Suites automatiques à multi-indices, Sém. de Théorie des Nombres de Bordeaux, exposé n° 4 (1986-1987), 4.01-4.36. (avec un appendice de Shallit, J.). · Zbl 0653.10049
[24] Schneider, T., Einführung in die Tranzendenten Zahlen, Springer, Berlin (1957.). · Zbl 0077.04703
[25] Schützenberger, M.P., On a definition of a family of automata, Information and Control4 (1961), 245-270. · Zbl 0104.00702
[26] Sharif, H. et Woodcock, C.F., Algebraic functions over a field of positive characteristic and Hadamard products, J. Lond. Math. Soc. (2) 37 (1988), 395-403. · Zbl 0612.12018
[27] Sharif, H. et Woodcock, C.F., Hadamard products of rational formal power series. Preprint. · Zbl 0703.13017
[28] Sharif, H. et Woodcock, C.F., On the transcendence of certain series, J. Algebra121 (1989), 364-369. · Zbl 0689.13014
[29] Wade, L.I., Two types of function field transcendental numbers, Duke Math. J.11 (1944), 755-758.. · Zbl 0063.08103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.