×

zbMATH — the first resource for mathematics

Multi-object tracking using deformable convolution networks with tracklets updating. (English) Zbl 1434.93101
MSC:
93E11 Filtering in stochastic control theory
68T45 Machine vision and scene understanding
Software:
DeepLab
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abdusalomov, A. and Whangbo, T. K., An improvement for the foreground recognition method using shadow removal technique for indoor environments, Int. J. Wavelets, Multiresolut. Inform. Process.15(4) (2017) 1750039.
[2] Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O. and Torr, P. H. S., Staple: Complementary learners for real-time tracking, in IEEE Conf. Computer Vision and Pattern Recognition CVPR (IEEE, Las Vegas, NV, USA, 2016).
[3] Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A. and Torr, P. H. S., Fully-convolutional siamese networks for object tracking, in Computer Vision C ECCV 2016 Workshops, (2016) pp. 850-865.
[4] Bewley, A., Ge, Z., Ott, L., Ramos, F. and Upcroft, B., Simple online and realtime tracking, in IEEE Int. Conf. Image Processing (ICIP) (IEEE, Phoenix, AZ, USA, 2016).
[5] Brabandere, B. D., Jia, X., Tuytelaars, T. and Gool, L. V., Dynamic filter networks, in Conference and Workshop on Neural Information Processing Systems (NIPS, Barcelona, Spain, 2016).
[6] Chatfield, K., Simonyan, K., Vedaldi, A. and Zisserman, A., Return of the devil in the details: Delving deep into convolutional nets, in Proc. British Machine Vision Conference (BMVA Press, Nottingham, UK, 2014).
[7] Chen, Z., Li, J., Chen, Z. and You, X., Generic pixel level object tracker using bi-channel fully convolutional network, Lect. Notes Comput. Sci.10634 (2017) 666-676.
[8] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A. L., Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs, IEEE Trans. Pattern Anal. Mach. Intelli.40(4) (2018) 834-848.
[9] Chen, Z., You, X., Zhong, B., Li, J. and Tao, D., Dynamically modulated mask sparse tracking, IEEE Trans. Cyber.47(11) (2017) 3706-3718.
[10] Choi, J., Chang, J., Yun, S., Fischer, T., Demiris, Y. and Choi, J. Y., Attentional correlation filter network for adaptive visual tracking, in IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (IEEE, Honolulu, HI, USA, 2017).
[11] Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H. and Wei, Y., Deformable convolutional networks, in IEEE Int. Conf. Computer Vision (ICCV) (IEEE, Venice, Italy, 2017).
[12] Danelljan, M., Hager, G., Khan, F. S. and Felsberg, M., Convolutional features for correlation filter based visual tracking, in IEEE Int. Conf. Computer Vision Workshop (ICCVW) (IEEE, Santiago, Chile, 2015).
[13] Danelljan, M., Hager, G., Khan, F. S. and Felsberg, M., Learning spatially regularized correlation filters for visual tracking,” in Int. Conf. Computer Vision (IEEE, Santiago, Chile, 2015).
[14] Danelljan, M., Hager, G., Khan, F. S. and Felsberg, M., Discriminative scale space tracking, in IEEE Trans. Pattern Anal. Mach. Intell.39(8) (2017) 1561-1575.
[15] Dimou, A., Medentzidou, P., Garcia, F. Alvarez and Daras, P., Multi-target detection in CCTV footage for tracking applications using deep learning techniques, in IEEE Ind. Conf. Image Processing (ICIP) (IEEE, Phoenix, AZ, USA, 2016).
[16] Doersch, C., Gupta, A. and Efros, A. A., Unsupervised visual representation learning by context prediction, in IEEE Int. Conf. Computer Vision (ICCV) (IEEE, Santiago, Chile, 2015).
[17] Dubey, A. and Agarwal, S., Modeling image virality with pairwise spatial transformer networks, in Proc. ACM on Multimedia Conference — MM’17 (ACM, Mountain View, CA, USA, 2017).
[18] Feichtenhofer, C., Pinz, A. and Zisserman, A., Convolutional two-stream network fusion for video action recognition, in IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (IEEE, Las Vegas, NV, USA, 2016).
[19] Girshick, R., Iandola, F., Darrell, T. and Malik, J., Deformable part models are convolutional neural networks, in IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (IEEE, Boston, MA, USA, 2015).
[20] Gu, Y., Chen, Y., Jiang, Z. and Tang, K., Particle filter based multi-camera integration for face 3D-pose tracking, in Int. J. Wavelets, Multiresoluti. Inform. Process.4(4) (2006) 677-690. · Zbl 1147.68747
[21] Guan, H., Xue, X. and Zhiyong, A., Online video tracking using collaborative convolutional networks, in IEEE Int. Conf. Multimedia and Expo (ICME) (IEEE, Seattle, WA, USA, 2016).
[22] He, Z., Yi, S., Cheung, Y.-M., You, X. and Tang, Y. Y., Robust object tracking via key patch sparse representation, IEEE Trans. Cybern. (2016) pp. 1-11.
[23] He, Z., Li, X., You, X., Tao, D. and Tang, Y. Y., Connected component model for multi-object tracking, IEEE Trans. Image Process.25(8) (2016) 3698-3711. · Zbl 1408.94243
[24] Held, D., Thrun, S. and Savarese, S., Learning to Track at 100 FPS with deep regression networks, Lect. Notes Comput. Sci.9905 (2016) 749-765.
[25] Hertel, L., Barth, E., Kaster, T. and Martinetz, T., Deep convolutional neural networks as generic feature extractors, in Int. Joint Conf. Neural Networks (IJCNN) (IEEE, Killarney, Ireland, 2015).
[26] Jeon, Y. and Kim, J., Active convolution: Learning the shape of convolution for image classification, in Int. Conf. Computer Vision and Pattern Recognition (CVPR) (IEEE, Honolulu, HI, USA, 2017).
[27] Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R. and Fei-Fei, L., Large-scale video classification with convolutional neural networks, in IEEE Conf. Computer Vision and Pattern Recognition (IEEE, Columbus, OH, USA, 2014).
[28] Krizhevsky, A., Sutskever, I. and Hinton, G. E., ImageNet classification with deep convolutional neural networks, Commun. ACM60(6) (2017) 84-90.
[29] Laptev, D., Savinov, N., Buhmann, J. M. and Pollefeys, M.. Ti-pooling: Transformation-invariant pooling for feature learning in convolutional neural networks, in IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (IEEE, Las Vegas, NV, USA, 2016).
[30] Lazebnik, S., Schmid, C. and Ponce, J.. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories, in Int. Conf. Computer Vision and Pattern Recognition (IEEE, New York, NY, USA, 2006).
[31] Lenc, K. and Vedaldi, A.. Understanding image representations by measuring their equivariance and equivalence, in IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (IEEE, Boston, MA, USA, 2015).
[32] Li, H., Li, Y. and Porikli, F., Robust online visual tracking with a single convolutional neural network, Lect. Notes Comput. Sci.9007 (2015) 194-209.
[33] Liang, P., Blasch, E. and Ling, H., Encoding color information for visual tracking: Algorithms and benchmark, IEEE Trans. Image Process.24(12) (2015) 5630-5644. · Zbl 1408.94355
[34] Lin, C.-H. and Lucey, S., Inverse compositional spatial transformer networks, in IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (IEEE, Honolulu, HI, USA, 2017).
[35] Liu, Y., Li, Y., Ji, X. and Wang, Y., Robust visual tracking via collaborative voting with structured sparse representation, in Int. J. Hybrid Inform. Technol.10(1) (2017) 125-138.
[36] Long, J., Shelhamer, E. and Darrell, T., Fully convolutional networks for semantic segmentation, in IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (IEEE, Boston, MA, USA, 2015).
[37] Lowe, D. G.. Object recognition from local scale-invariant features, in IEEE Int. Conf. Computer Vision (ICCV) (IEEE, Kerkyra, Corfu, Greece, 1999).
[38] Ma, C., Huang, J.-B., Yang, X. and Yang, M.-H., Hierarchical convolutional features for visual tracking, in IEEE Int. Conf. Computer Vision (ICCV) (IEEE, Santiago, Chile, 2015).
[39] Nam, H. and Han, B., Learning multi-domain convolutional neural networks for visual tracking, in IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (IEEE, Las Vegas, NV, USA, 2016).
[40] Nie, Y., Dai, B., An, X., Sun, Z., Wu, T. and He, H., Fast lane detection using direction kernel function, in Int. J. Wavelets, Multiresolut. Inform. Process.10(2) (2012) 1250017.
[41] Ouyang, W., Wang, X., Zeng, X., Qiu, S., Luo, P., Tian, Y., Li, H., Yang, S., Wang, Z., Loy, C.-C. and Tang, X., DeepID-Net: Deformable deep convolutional neural networks for object detection, in IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (IEEE, Boston, MA, USA, 2015).
[42] Qi, X., Huabin, W., Jian, Z. and Liang, T., Real-time online tracking via a convolution-based complementary model, IEEE Access, 6 (2018) 30073-30085.
[43] Qi, Y., Zhang, S., Qin, L., Yao, H., Huang, Q., Lim, J. and Yang, M.-H., Hedged deep tracking, in IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (IEEE, Las Vegas, NV, USA, 2016).
[44] Rahul, M. V., Ambareesh, R. and Shobha, G., Siamese network for underwater multiple object tracking, in Proc. 9th Int. Conf. Machine Learning and Computing — ICMLC (ACM, Singapore, 2017).
[45] Razavian, A. S., Azizpour, H., Sullivan, J. and Carlsson, S., CNN features off-the-shelf: An astounding baseline for recognition, in IEEE Conf. Computer Vision and Pattern Recognition Workshops (IEEE, Columbus, OH, USA, 2014).
[46] Ren, S., He, K., Girshick, R. and Sun, J., Faster R-CNN: Towards real-time object detection with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intelli.39(6) (2017) 1137-1149.
[47] Rublee, E., Rabaud, V., Konolige, K. and Bradski, G., ORB: An efficient alternative to SIFT or SURF, Int. Conf. Computer Vision (IEEE, Barcelona, Spain, 2011).
[48] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C. and Fei-Fei, L., ImageNet large scale visual recognition challenge, Int. J. Comput. Vision115(3) (2015) 211-252.
[49] Smeulders, A., Chu, D., Cucchiara, R., Calderara, S., Afshindehghan and Shah, M., Visual tracking: An experimental survey, IEEE Trans. Pattern Anal. Mach. Intell.36(7) 1442-1468 (2014).
[50] Tao, R., Gavves, E. and Smeulders, A. W. M., Siamese instance search for tracking, in IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (IEEE, Las Vegas, NV, USA, 2016).
[51] Vo, D. M. and Lee, S.-W., Semantic image segmentation using fully convolutional neural networks with multi-scale images and multi-scale dilated convolutions, Multimedia Tools Appl.77 (2018) 18689-18707.
[52] Wang, L., Ouyang, W., Wang, X. and Lu, H., Visual tracking with fully convolutional networks, in IEEE Int. Conf. Computer Vision (ICCV) (IEEE, Santiago, Chile, 2015).
[53] Wang, J., Zhu, H., Yu, S. and Fan, C., Object tracking using color-feature guided network generalization and tailored feature fusion, Neurocomputing, 238 (2017) pp. 387-398.
[54] Wei, Y., You, X. and Deng, H., Small infrared target detection based on image patch ordering, Int. J. Wavelets, Multiresolut. Inform. Process.14(2) (2016) 1640007. · Zbl 1333.68250
[55] Worrall, D. E., Garbin, S. J., Turmukhambetov, D. and Brostow, G. J.. Harmonic networks: Deep translation and rotation equivariance, in IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (IEEE, Honolulu, HI, USA, 2017).
[56] Wu, Y., Lim, J. and Yang, M. H., Online object tracking: A benchmark, in Int. Conf. Computer Vision and Pattern Recognition (CVPR) (IEEE, Portland, OR, USA, 2013).
[57] Xue, Y. and Li, Y., A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects, in Computer-Aided Civil Infrastruct. Eng.33(8) (2018) 638-654.
[58] Yamashita, T., Watasue, T., Yamauchi, Y. and Fujiyoshi, H., Improving quality of training samples through exhaustless generation and effective selection for deep convolutional neural networks, in 10th Int. Conf. Computer Vision Theory and Applications (2015).
[59] Yu, F., Koltun, V. and Funkhouser, T.. Dilated residual networks, in IEEE Conf. Computer Vision and Pattern Recognition (CVPR) (IEEE, Honolulu, HI, USA, 2017).
[60] Zhang, Y., Huang, Y. and Wang, L., What makes for good multiple object trackers?, in IEEE Int. Conf. Digital Signal Processing (DSP) (IEEE, Beijing, China, 2016).
[61] Zhang, K., Liu, Q., Wu, Y. and Yang, M.-H., Robust visual tracking via convolutional networks without training, IEEE Trans. Image Process.25 (2016) 1. · Zbl 1408.94900
[62] Zhang, Y., Tang, Y., Fang, B. and Shang, Z., Real-time object tracking in video pictures based on self-organizing map and image segmentation, in IEEE 7th Joint Int. Information Technology and Artificial Intelligence Conference (IEEE, Chongqing, China, 2014).
[63] Zhang, Y., Tang, Y., Fang, B. and Shang, Z., Fast multi-object tracking using convolutional neural networks with tracklets updating, in Int. Conf. Security, Pattern Analysis and Cybernetics (SPAC) (IEEE, Shenzhen, China, 2017).
[64] Zhang, Y., Tang, Y., Fang, B., Shang, Z. and Suen, C. Y., Self-organizing map-based object tracking with saliency map and K-means segmentation, in Pattern Recogn. (2014) 436-444.
[65] Zhang, P., Yu, S., Xu, J., You, X., Jiang, X., Jing, X.-Y. and Tao, D., Robust visual tracking using multi-frame multi-feature joint modeling, in IEEE Trans. Circuits Syst. Video Technol.99 (2018) 1.
[66] Zhang, K., Zhang, L., Liu, Q., Zhang, D. and Yang, M.-H., Fast visual tracking via dense spatio-temporal context learning, Lect. Notes Comput. Sci.8693 (2014) 127-141.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.