zbMATH — the first resource for mathematics

Krylov implicit integration factor method for a class of stiff reaction-diffusion systems with moving boundaries. (English) Zbl 1427.65172
Summary: The systems of reaction-diffusion equations coupled with moving boundaries defined by Stefan condition have been widely used to describe the dynamics of spreading population. There are several numerical difficulties to efficiently handle such systems. Firstly extremely small time steps are usually demanded due to the stiffness of the system. Secondly it is always difficult to efficiently and accurately handle the moving boundaries. To overcome these difficulties, we first transform the one-dimensional problem with a moving boundary into a system with a fixed computational domain, and then introduce four different temporal schemes: Runge-Kutta, Crank-Nicolson, implicit integration factor (IIF) and Krylov IIF for handling such stiff systems. Numerical examples are examined to illustrate the efficiency, accuracy and consistency for different approaches, and it can be shown that Krylov IIF is superior to other three approaches in terms of stability and efficiency by direct comparison.

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
92D25 Population dynamics (general)
35R37 Moving boundary problems for PDEs
35K57 Reaction-diffusion equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L04 Numerical methods for stiff equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65F50 Computational methods for sparse matrices
65F60 Numerical computation of matrix exponential and similar matrix functions
Full Text: DOI
[1] W. Bao; Y. Du; Z. Lin; H. Zhu, Free boundary models for mosquito range movement driven by climate warming, Journal of Mathematical Biology, 76, 841-875 (2018) · Zbl 1402.35283
[2] G. Bunting; Y. Du; K. Krakowski, Spreading speed revisited: analysis of a free boundary model, Networks and Heterogeneous Media, 7, 583-603 (2012) · Zbl 1302.35194
[3] K. Burrage; J. C. Butcher, Stability criteria for implicit Runge-Kutta methods, SIAM Journal on Numerical Analysis, 16, 46-57 (1979) · Zbl 0396.65043
[4] L. A. Caffarelli and S. Salsa, A Geometric Approach to Free Boundary Problems, American Mathematical Soc., 2005. · Zbl 1083.35001
[5] Y. Cao; A. Faghri; W. S. Chang, A numerical analysis of Stefan problems for generalized multi-dimensional phase-change structures using the enthalpy transforming model, International Journal of Heat and Mass Transfer, 32, 1289-1298 (1989) · Zbl 0674.76072
[6] H. Chen; C. Min; F. Gibou, A numerical scheme for the Stefan problem on adaptive Cartesian grids with supralinear convergence rate, Journal of Computational Physics, 228, 5803-5818 (2009) · Zbl 1176.80059
[7] S. Chen; B. Merriman; S. Osher; P. Smereka, A simple level set method for solving Stefan problems, Journal of Computational Physics, 135, 8-29 (1997) · Zbl 0889.65133
[8] S. Chen; Y. Zhang, Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: application to discontinuous Galerkin methods, Journal of Computational Physics, 230, 4336-4352 (2011) · Zbl 1416.65341
[9] I. L. Chern; J. Glimm; O. McBryan; B. Plohr; S. Yaniv, Front tracking for gas dynamics, Journal of Computational Physics, 62, 83-110 (1986) · Zbl 0577.76068
[10] Y. Du; Z. Guo, The Stefan problem for the Fisher-KPP equation, Journal of Differential Equations, 253, 996-1035 (2012) · Zbl 1257.35110
[11] Y. Du; Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM Journal on Mathematical Analysis, 42, 377-405 (2010) · Zbl 1219.35373
[12] Y. Du; B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, Journal of the European Mathematical Society, 17, 2673-2724 (2015) · Zbl 1331.35399
[13] Y. Du; H. Matano; K. Wang, Regularity and asymptotic behavior of nonlinear Stefan problems, Archive for Rational Mechanics and Analysis, 212, 957-1010 (2014) · Zbl 1293.35331
[14] R. Fedkiw and S. Osher, Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, 153. Springer-Verlag, New York, 2003. · Zbl 1026.76001
[15] E. Gallopoulos; Y. Saad, Efficient solution of parabolic equations by Krylov approximation methods, SIAM Journal on Scientific and Statistical Computing, 13, 1236-1264 (1992) · Zbl 0757.65101
[16] F. Gibou; R. Fedkiw, A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem, Journal of Computational Physics, 202, 577-601 (2005) · Zbl 1061.65079
[17] J. Glimm; X. L. Li; Y. Liu; N. Zhao, Conservative front tracking and level set algorithms, Proceedings of the National Academy of Sciences, 98, 14198-14201 (2001) · Zbl 1005.65091
[18] E. Hairer; G. Wanner, Stiff differential equations solved by Radau methods, Journal of Computational and Applied Mathematics, 111, 93-111 (1999) · Zbl 0945.65080
[19] N. J. Higham, The scaling and squaring method for the matrix exponential revisited, SIAM Journal on Matrix Analysis and Applications, 26, 1179-1193 (2005) · Zbl 1081.65037
[20] J. Hilditch; P. Colella, A front tracking method for compressible flames in one dimension, SIAM Journal on Scientific Computing, 16, 755-772 (1995) · Zbl 0829.76063
[21] M. Hochbruck; C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM Journal on Numerical Analysis, 34, 1911-1925 (1997) · Zbl 0888.65032
[22] J. Hua; J. F. Stene; P. Lin, Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method, Journal of Computational Physics, 227, 3358-3382 (2008) · Zbl 1329.76262
[23] T. Jiang; Y. Zhang, Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection-diffusion-reaction equations, Journal of Computational Physics, 253, 368-388 (2013) · Zbl 1349.65305
[24] T. Jiang; Y. Zhang, Krylov single-step implicit integration factor WENO method for advection-diffusion-reaction equations, Journal of Computational Physics, 311, 22-44 (2016) · Zbl 1349.65306
[25] H. G. Landau, Heat conduction in a melting solid, Quarterly of Applied Mathematics, 8, 81-94 (1950) · Zbl 0036.13902
[26] R. J. Leveque; Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM Journal on Numerical Analysis, 31, 1019-1044 (1994) · Zbl 0811.65083
[27] R. J. Leveque; K. M. Shyue, Two-dimensional front tracking based on high resolution wave propagation methods, Journal of Computational Physics, 123, 354-368 (1996) · Zbl 0849.65063
[28] S. Liu and X. Liu, Numerical methods for a two-species competition-diffusion model with free boundaries, Mathematics, 6 (2018), 72.
[29] D. Lu; Y. Zhang, Krylov integration factor method on sparse grids for high spatial dimension convection-diffusion equations, Journal of Scientific Computing, 69, 736-763 (2016) · Zbl 1370.65045
[30] M. M. Mac Low and R. S. Klessen, Control of star formation by supersonic turbulence, Reviews of Modern Physics, 76 (2004), 125.
[31] C. Moler; C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Review, 45, 3-49 (2003) · Zbl 1030.65029
[32] Q. Nie; F. Y. Wan; Y. Zhang; X. Liu, Compact integration factor methods in high spatial dimensions, Journal of Computational Physics, 277, 5238-5255 (2008) · Zbl 1142.65072
[33] Q. Nie; Y. Zhang; R. Zhao, Efficient semi-implicit schemes for stiff systems, Journal of Computational Physics, 214, 521-537 (2006) · Zbl 1089.65094
[34] S. Osher; R. P. Fedkiw, Level set methods: an overview and some recent results, Journal of Computational Physics, 169, 463-502 (2001) · Zbl 0988.65093
[35] S. Osher; J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79, 12-49 (1988) · Zbl 0659.65132
[36] D. Peng; B. Merriman; S. Osher; H. Zhao; M. Kang, A PDE-based fast local level set method, Journal of Computational Physics, 155, 410-438 (1999) · Zbl 0964.76069
[37] C. S. Peskin, The immersed boundary method, Acta Numerica, 11, 479-517 (2002) · Zbl 1123.74309
[38] M. A. Piqueras; R. Company; L. Jodar, A front-fixing numerical method for a free boundary nonlinear diffusion logistic population model, Journal of Computational and Applied Mathematics, 309, 473-481 (2017) · Zbl 1349.92129
[39] L. I. Rubinstein, The Stefan Problem, Providence, RI: American Mathematical Society, 1971.
[40] Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM Journal on Numerical Analysis, 29, 209-228 (1992) · Zbl 0749.65030
[41] J. A. Sethian, A fast marching level set method for monotonically advancing fronts, Proceedings of the National Academy of Sciences, 93, 1591-1595 (1996) · Zbl 0852.65055
[42] M. Sussman; P. Smereka; S. Osher, A level set approach for computing solutions to incompressible two-phase flow, Journal of Computational Physics, 114, 146-159 (1994) · Zbl 0808.76077
[43] L. N. Trefethen and D. Bau, III Numerical Linear Algebra, SIAM, 1997. · Zbl 0874.65013
[44] S. O. Unverdi; G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, Journal of Computational Physics, 100, 25-37 (1992) · Zbl 0758.76047
[45] A. Wiegmann; K. P. Bube, The immersed interface method for nonlinear differential equations with discontinuous coefficients and singular sources, SIAM Journal on Numerical Analysis, 35, 177-200 (1998) · Zbl 0913.65076
[46] J. J. Xu; Z. Li; J. Lowengrub; H. Zhao, A level-set method for interfacial flows with surfactant, Journal of Computational Physics, 212, 590-616 (2006) · Zbl 1161.76548
[47] H. K. Zhao; T. Chan; B. Merriman; S. Osher, A variational level set approach to multiphase motion, Journal of Computational Physics, 127, 179-195 (1996) · Zbl 0860.65050
[48] L. Zhu; C. S. Peskin, Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method, Journal of Computational Physics, 179, 452-468 (2002) · Zbl 1130.76406
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.