Götze, Friedrich; Sambale, Holger Second order concentration via logarithmic Sobolev inequalities. (English) Zbl 1448.60049 Bernoulli 26, No. 1, 93-126 (2020). The authors derive second-order concentration-of-measure results, that is, employing second-order difference (or differential) operators, and where fluctuations of random variables of the form \(f-\mathbb{E}f-f_1\) are considered, where \(f_1\) is the first-order term in the Hoeffding decomposition of \(f\). Both the differentiable and non-differentiable settings are studied. Proofs are based on modified logarithmic Sobolev inequalities and exponential inequalities. Applications are given to functions of independent random variables and in random matrix theory. Reviewer: Fraser Daly (Edinburgh) Cited in 3 Documents MSC: 60E15 Inequalities; stochastic orderings 60B20 Random matrices (probabilistic aspects) Keywords:bootstrap approximation; concentration of measure phenomenon; functions on the discrete cube; Hoeffding decomposition; logarithmic Sobolev inequalities PDFBibTeX XMLCite \textit{F. Götze} and \textit{H. Sambale}, Bernoulli 26, No. 1, 93--126 (2020; Zbl 1448.60049) Full Text: DOI arXiv Euclid References: [1] Adamczak, R. and Wolff, P. (2015). Concentration inequalities for non-Lipschitz functions with bounded derivatives of higher order. Probab. Theory Related Fields 162 531-586. · Zbl 1323.60033 · doi:10.1007/s00440-014-0579-3 [2] Aida, S., Masuda, T. and Shigekawa, I. (1994). Logarithmic Sobolev inequalities and exponential integrability. J. Funct. Anal. 126 83-101. · Zbl 0846.46020 · doi:10.1006/jfan.1994.1142 [3] Arcones, M.A. and Giné, E. (1993). Limit theorems for \(U\)-processes. Ann. Probab. 21 1494-1542. · Zbl 0789.60031 [4] Bickel, P.J., Götze, F. and van Zwet, W.R. (1997). Resampling fewer than \(n\) observations: Gains, losses, and remedies for losses. Statist. Sinica 7 1-31. · Zbl 0927.62043 [5] Bobkov, S.G., Chistyakov, G.P. and Götze, F. (2017). Second-order concentration on the sphere. Commun. Contemp. Math. 19 1650058, 20. · Zbl 1373.60043 [6] Bobkov, S.G. and Götze, F. (1999). Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 1-28. · Zbl 0924.46027 · doi:10.1006/jfan.1998.3326 [7] Bobkov, S.G. and Götze, F. (2007). Concentration inequalities and limit theorems for randomized sums. Probab. Theory Related Fields 137 49-81. · Zbl 1111.60014 · doi:10.1007/s00440-006-0500-9 [8] Bobkov, S.G. and Götze, F. (2010). Concentration of empirical distribution functions with applications to non-i.i.d. models. Bernoulli 16 1385-1414. · Zbl 1207.62106 · doi:10.3150/10-BEJ254 [9] Bobkov, S.G., Götze, F. and Sambale, H. (2018). Higher order concentration of measure. Commun. Contemp. Math., online first. https://doi.org/10.1142/S0219199718500438. · Zbl 1447.60049 [10] Bobkov, S.G. and Ledoux, M. (2000). From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal. 10 1028-1052. · Zbl 0969.26019 · doi:10.1007/PL00001645 [11] Borodin, A.N. and Ibragimov, I.A. (1994). Limit theorems for functionals of random walks. Tr. Mat. Inst. Steklova 195 286. · Zbl 0840.60002 [12] Boucheron, S., Lugosi, G. and Massart, P. (2003). Concentration inequalities using the entropy method. Ann. Probab. 31 1583-1614. · Zbl 1051.60020 · doi:10.1214/aop/1055425791 [13] Boucheron, S., Lugosi, G. and Massart, P. (2013). Concentration Inequalities. Oxford: Oxford Univ. Press. · Zbl 1279.60005 [14] Cordero-Erausquin, D., Fradelizi, M. and Maurey, B. (2004). The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems. J. Funct. Anal. 214 410-427. · Zbl 1073.60042 · doi:10.1016/j.jfa.2003.12.001 [15] de la Peña, V.H. and Giné, E. (1999). Decoupling: From Dependence to Independence. Probability and Its Applications (New York). New York: Springer. [16] Götze, F. (1993). IMS Bulletin. [17] Götze, F. and Venker, M. (2014). Local universality of repulsive particle systems and random matrices. Ann. Probab. 42 2207-2242. · Zbl 1301.60009 · doi:10.1214/13-AOP844 [18] Guionnet, A. and Zeitouni, O. (2000). Concentration of the spectral measure for large matrices. Electron. Commun. Probab. 5 119-136. · Zbl 0969.15010 · doi:10.1214/ECP.v5-1026 [19] Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19 293-325. · Zbl 0032.04101 · doi:10.1214/aoms/1177730196 [20] Johansson, K. (1998). On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91 151-204. · Zbl 1039.82504 · doi:10.1215/S0012-7094-98-09108-6 [21] Khorunzhy, A.M., Khoruzhenko, B.A. and Pastur, L.A. (1996). Asymptotic properties of large random matrices with independent entries. J. Math. Phys. 37 5033-5060. · Zbl 0866.15014 · doi:10.1063/1.531589 [22] Ledoux, M. (1995/97). On Talagrand’s deviation inequalities for product measures. ESAIM Probab. Stat. 1 63-87. · Zbl 0869.60013 · doi:10.1051/ps:1997103 [23] Ledoux, M. (1999). Concentration of measure and logarithmic Sobolev inequalities. In Séminaire de Probabilités, XXXIII. Lecture Notes in Math. 1709 120-216. Berlin: Springer. · Zbl 0957.60016 [24] Ledoux, M. (2001). The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89. Providence, RI: Amer. Math. Soc. · Zbl 0995.60002 [25] Lytova, A. and Pastur, L. (2008). On asymptotic behavior of multilinear eigenvalue statistics of random matrices. J. Stat. Phys. 133 871-882. · Zbl 1161.82010 · doi:10.1007/s10955-008-9644-6 [26] Major, P. (2013). On the Estimation of Multiple Random Integrals and \(U\)-Statistics. Lecture Notes in Math. 2079. Heidelberg: Springer. · Zbl 1280.60002 [27] Politis, D.N. and Romano, J.P. (1994). Large sample confidence regions based on subsamples under minimal assumptions. Ann. Statist. 22 2031-2050. · Zbl 0828.62044 · doi:10.1214/aos/1176325770 [28] Robins, J.M., Li, L., Tchetgen, E.T. and van der Vaart, A. (2016). Asymptotic normality of quadratic estimators. Stochastic Process. Appl. 126 3733-3759. · Zbl 1348.62170 · doi:10.1016/j.spa.2016.04.005 [29] Sambale, H. (2015). Second order concentration for functions of independent random variables. Ph.D. thesis, Bielefeld Univ. [30] Sinai, Y. and Soshnikov, A. (1998). Central limit theorem for traces of large random symmetric matrices with independent matrix elements. Bol. Soc. Bras. Mat. 29 1-24. · Zbl 0912.15027 · doi:10.1007/BF01245866 [31] Talagrand, M. (1995). Concentration of measure and isoperimetric inequalities in product spaces. Publ. Math. Inst. Hautes Études Sci. 81 73-205. · Zbl 0864.60013 [32] Talagrand, M. (1996). New concentration inequalities in product spaces. Invent. Math. 126 505-563. · Zbl 0893.60001 · doi:10.1007/s002220050108 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.