Liang, Mingjie; Schilling, René L.; Wang, Jian A unified approach to coupling SDEs driven by Lévy noise and some applications. (English) Zbl 1465.60039 Bernoulli 26, No. 1, 664-693 (2020). In one of the first attempts to systematically treat coupling of jump processes which are not Lévy processes, the authors study Markovian couplings for stochastic differential equations (SDEs) driven by Lévy noise. Working with coupling operators, their approach of unifies the three known types of coupling, refined basic coupling, coupling by reflection, and coupling from the point of view optimal transport introduced by M. B. Majka [Stochastic Processes Appl. 127, No. 12, 4083–4125 (2017; Zbl 1374.60088)]. The technique is applied to proving new regularity results for the transition semigroup and the couplings of the solutions of SDEs driven by additive Lévy noise. Optimality of the three couplings is discussed in a sense close to the notion of M. Chen [Acta Math. Sin., New Ser. 10, No. 3, 260–275 (1994; Zbl 0813.60068)]. A possible extension to SDEs with multiplicative Lévy noise is also considered. Reviewer: Heinrich Hering (Rockenberg) Cited in 7 Documents MSC: 60G51 Processes with independent increments; Lévy processes 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis) Keywords:coupling by reflection; refined basic coupling; coupling operator; optimal coupling; successful coupling; Lévy process; additive Lévy noise; multiplicative Lévy noise Citations:Zbl 1374.60088; Zbl 0813.60068 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Aldous, D. (1983). Random walks on finite groups and rapidly mixing Markov chains. In Seminar on Probability, XVII. Lecture Notes in Math. 986 243-297. Berlin: Springer. · Zbl 0514.60067 [2] Alishahi, K. and Salavati, S. (2016). A sufficient condition for absolute continuity of infinitely divisible distributions. Available at arXiv:1606.07106. [3] Alishahi, K. and Salavati, S. (2018). Local coupling property for Markov processes with applications to Lévy processes. Available at arXiv:1802.09608. [4] Banerjee, S. and Kendall, W.S. (2017). Rigidity for Markovian maximal couplings of elliptic diffusions. Probab. Theory Related Fields 168 55-112. · Zbl 1374.60148 · doi:10.1007/s00440-016-0706-4 [5] Böttcher, B. (2017). Markovian maximal coupling of Markov processes. Available at arXiv:1710.09654. [6] Böttcher, B., Schilling, R. and Wang, J. (2013). Lévy Matters. III: Lévy-Type Processes: Construction, Approximation and Sample Path Properties. Lecture Notes in Math. 2099. Cham: Springer. · Zbl 1384.60004 [7] Böttcher, B., Schilling, R.L. and Wang, J. (2011). Constructions of coupling processes for Lévy processes. Stochastic Process. Appl. 121 1201-1216. · Zbl 1217.60035 [8] Burdzy, K. and Kendall, W.S. (2000). Efficient Markovian couplings: Examples and counterexamples. Ann. Appl. Probab. 10 362-409. · Zbl 1054.60077 · doi:10.1214/aoap/1019487348 [9] Chen, M. (1994). Optimal Markovian couplings and applications. Acta Math. Sin. (Engl. Ser.) 10 260-275. · Zbl 0813.60068 · doi:10.1007/BF02560717 [10] Chen, M.-F. (2005). Eigenvalues, Inequalities, and Ergodic Theory. Probability and Its Applications (New York). London: Springer. · Zbl 1079.60005 [11] Chen, M.F. and Li, S.F. (1989). Coupling methods for multidimensional diffusion processes. Ann. Probab. 17 151-177. · Zbl 0686.60083 · doi:10.1214/aop/1176991501 [12] Chen, Z.-Q., Song, R. and Zhang, X. (2018). Stochastic flows for Lévy processes with Hölder drifts. Rev. Mat. Iberoam. 34 1755-1788. · Zbl 1420.60064 [13] Cranston, M. (1991). Gradient estimates on manifolds using coupling. J. Funct. Anal. 99 110-124. · Zbl 0770.58038 · doi:10.1016/0022-1236(91)90054-9 [14] Dereich, S. (2011). Multilevel Monte Carlo algorithms for Lévy-driven SDEs with Gaussian correction. Ann. Appl. Probab. 21 283-311. · Zbl 1220.60040 · doi:10.1214/10-AAP695 [15] Dereich, S. and Heidenreich, F. (2011). A multilevel Monte Carlo algorithm for Lévy-driven stochastic differential equations. Stochastic Process. Appl. 121 1565-1587. · Zbl 1234.60067 · doi:10.1016/j.spa.2011.03.015 [16] Ernst, P.A., Kendall, W.S., Roberts, G.O. and Rosenthal, J.S. (2019). MEXIT: Maximal un-coupling times for stochastic processes. Stochastic Process. Appl. 129 355-380. · Zbl 1403.60062 · doi:10.1016/j.spa.2018.03.001 [17] Gangbo, W. and McCann, R.J. (1996). The geometry of optimal transportation. Acta Math. 177 113-161. · Zbl 0887.49017 · doi:10.1007/BF02392620 [18] Griffeath, D. (1974/75). A maximal coupling for Markov chains. Z. Wahrsch. Verw. Gebiete 31 95-106. · Zbl 0301.60043 · doi:10.1007/BF00539434 [19] Hsu, E.P. and Sturm, K.-T. (2013). Maximal coupling of Euclidean Brownian motions. Commun. Math. Stat. 1 93-104. · Zbl 1277.60132 · doi:10.1007/s40304-013-0007-5 [20] Ikeda, N. and Watanabe, S. (1989). Stochastic Differential Equations and Diffusion Processes, 2nd ed. North-Holland Mathematical Library 24. Amsterdam: North-Holland. · Zbl 0684.60040 [21] Kühn, F. and Schilling, R.L. (2019). Strong convergence of the Euler-Maruyama approximation for a class of Lévy-driven SDEs. Stochastic Process. Appl. 129 2654-2680. · Zbl 1422.60097 [22] Liang, M. and Wang, J. (2018). Gradient estimates and ergodicity for SDEs driven multiplcative Lévy noises via coupling. Available at arXiv:1801.05936. [23] Liggett, T.M. (1985). Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 276. New York: Springer. · Zbl 0559.60078 [24] Lindvall, T. (1992). Lectures on the Coupling Method. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. New York: Wiley. · Zbl 0850.60019 [25] Lindvall, T. and Rogers, L.C.G. (1986). Coupling of multidimensional diffusions by reflection. Ann. Probab. 14 860-872. · Zbl 0593.60076 · doi:10.1214/aop/1176992442 [26] Luo, D. and Wang, J. (2019). Coupling by reflection and Hölder regularity for non-local operators of variable order. Trans. Amer. Math. Soc. 371 431-459. · Zbl 1432.60074 · doi:10.1090/tran/7259 [27] Luo, D. and Wang, J. (2019). Refined basic couplings and Wasserstein-type distances for SDEs with Lévy noises. Stochastic Process. Appl. 129 3129-3173. · Zbl 1422.60128 · doi:10.1016/j.spa.2018.09.003 [28] Majka, M.B. (2017). Coupling and exponential ergodicity for stochastic differential equations driven by Lévy processes. Stochastic Process. Appl. 127 4083-4125. · Zbl 1374.60088 · doi:10.1016/j.spa.2017.03.020 [29] McCann, R.J. (1999). Exact solutions to the transportation problem on the line. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 455 1341-1380. · Zbl 0947.90010 · doi:10.1098/rspa.1999.0364 [30] Priola, E. (2012). Pathwise uniqueness for singular SDEs driven by stable processes. Osaka J. Math. 49 421-447. · Zbl 1254.60063 [31] Priola, E. and Wang, F.-Y. (2006). Gradient estimates for diffusion semigroups with singular coefficients. J. Funct. Anal. 236 244-264. · Zbl 1110.47035 · doi:10.1016/j.jfa.2005.12.010 [32] Rachev, S.T. and Rüschendorf, L. (1998). Mass Transportation Problems. Vol. II: Applications. Probability and Its Applications (New York). New York: Springer. · Zbl 0990.60500 [33] Revuz, D. (1984). Markov Chains, 2nd ed. North-Holland Mathematical Library 11. Amsterdam: North-Holland. · Zbl 0539.60073 [34] Roberts, G.O. and Rosenthal, J.S. (2004). General state space Markov chains and MCMC algorithms. Probab. Surv. 1 20-71. · Zbl 1189.60131 · doi:10.1214/154957804100000024 [35] Schilling, R.L., Sztonyk, P. and Wang, J. (2012). Coupling property and gradient estimates of Lévy processes via the symbol. Bernoulli 18 1128-1149. · Zbl 1263.60045 · doi:10.3150/11-BEJ375 [36] Schilling, R.L. and Wang, J. (2011). On the coupling property of Lévy processes. Ann. Inst. Henri Poincaré Probab. Stat. 47 1147-1159. · Zbl 1268.60061 [37] Schilling, R.L. and Wang, J. (2012). On the coupling property and the Liouville theorem for Ornstein-Uhlenbeck processes. J. Evol. Equ. 12 119-140. · Zbl 1247.60113 · doi:10.1007/s00028-011-0126-y [38] Thorisson, H. (2000). Coupling, Stationarity, and Regeneration. Probability and Its Applications (New York). New York: Springer. · Zbl 0949.60007 [39] Villani, C. (2003). Topics in Optimal Transportation. Graduate Studies in Mathematics 58. Providence, RI: Am. Math. Soc. · Zbl 1106.90001 [40] Wang, J. (2010). Regularity of semigroups generated by Lévy type operators via coupling. Stochastic Process. Appl. 120 1680-1700. · Zbl 1204.60071 · doi:10.1016/j.spa.2010.04.007 [41] Wang, J. (2016). \(L^p\)-Wasserstein distance for stochastic differential equations driven by Lévy processes. Bernoulli 22 1598-1616. · Zbl 1348.60087 · doi:10.3150/15-BEJ705 [42] Zhang, X. (2013). Stochastic differential equations with Sobolev drifts and driven by \(\alpha \)-stable processes. Ann. Inst. Henri Poincaré Probab. Stat. 49 1057-1079. · Zbl 1279.60074 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.