×

Trimming a Gorenstein ideal. (English) Zbl 1441.13059

Summary: Let \(Q\) be a regular local ring of dimension \(3\). We show how to trim a Gorenstein ideal in \(Q\) to obtain an ideal that defines a quotient ring that is close to Gorenstein in the sense that its Koszul homology algebra is a Poincaré duality algebra \(P\) padded with a nonzero graded vector space on which \(P_{\ge 1}\) acts trivially. We explicitly construct an infinite family of such rings.

MSC:

13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)

References:

[1] L.L. Avramov, A cohomological study of local rings of embedding codepth 3, J. Pure Appl. Algebra 216 (2012), no. 11, 2489-2506. · Zbl 1259.13010 · doi:10.1016/j.jpaa.2012.03.012
[2] L.L. Avramov and E.S. Golod, On the homology algebra of the Koszul complex of a local Gorenstein ring, Mat. Zametki 9 (1971), 53-58. · Zbl 0222.13014
[3] L.L. Avramov, A.R. Kustin and M. Miller, Poincaré series of modules over local rings of small embedding codepth or small linking number, J. Algebra 118 (1988), no. 1, 162-204. · Zbl 0648.13008 · doi:10.1016/0021-8693(88)90056-7
[4] D.A. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension \(3\), Amer. J. Math. 99 (1977), no. 3, 447-485. · Zbl 0373.13006 · doi:10.2307/2373926
[5] L.W. Christensen and O. Veliche, Local rings of embedding codepth 3. Examples, Algebr. Represent. Theory 17 (2014), no. 1, 121-135. · Zbl 1295.13019 · doi:10.1007/s10468-012-9390-y
[6] L.W. Christensen, O. Veliche and J. Weyman, Linkage classes of grade \(3\) perfect ideals, preprint (2018), available at arXiv:1812.1152. To appear in J. Pure Appl. Algebra. · Zbl 1440.13056
[7] J.A. Faucett, Expanding the socle of a codimension 3 complete intersection, Rocky Mountain J. Math. 46 (2016), no. 5, 1489-1498. · Zbl 1354.13019 · doi:10.1216/RMJ-2016-46-5-1489
[8] J. Watanabe, A note on Gorenstein rings of embedding codimension three, Nagoya Math. J. 50 (1973), 227-232. · Zbl 0242.13019 · doi:10.1017/S002776300001566X
[9] J. Weyman, On the structure of free resolutions of length \(3\), J. Algebra 126 (1989), no. 1, 1-33. · Zbl 0705.13008 · doi:10.1016/0021-8693(89)90318-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.