×

zbMATH — the first resource for mathematics

Random characteristics for Wigner matrices. (English) Zbl 1427.15038
Summary: We extend the random characteristics approach to Wigner matrices whose entries are not required to have a normal distribution. As an application, we give a simple and fully dynamical proof of the weak local semicircle law in the bulk.
MSC:
15B52 Random matrices (algebraic aspects)
60B20 Random matrices (probabilistic aspects)
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] A. Adhikari and J. Huang. Dyson Brownian motion for general \(\beta\) and potential at the edge. Preprint at arXiv:1810.08308, 2018.
[2] A. Aggarwal. Bulk universality for generalized Wigner matrices with few moments. Probability Theory and Related Fields, 173(1):375-432, Feb 2019. · Zbl 1442.15055
[3] J. Alt, L. Erdős, and T. Krüger. Local inhomogeneous circular law. Ann. Appl. Probab., 28(1):148-203, 2018.
[4] G. W. Anderson, A. Guionnet, and O. Zeitouni. An introduction to random matrices, volume 118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010.
[5] Z. Bao, L. Erdős, and K. Schnelli. Local law of addition of random matrices on optimal scale. Comm. Math. Phys., 349(3):947-990, 2017. · Zbl 1416.60015
[6] R. Bauerschmidt, J. Huang, and H.-T. Yau. Local Kesten-McKay law for random regular graphs. Comm. Math. Phys., 369(2):523-636, 2019. · Zbl 1414.05260
[7] A. Bloemendal, L. Erdős, A. Knowles, H.-T. Yau, and J. Yin. Isotropic local laws for sample covariance and generalized Wigner matrices. Electron. J. Probab., 19:no. 33, 53, 2014. · Zbl 1288.15044
[8] P. Bourgade. Extreme gaps between eigenvalues of Wigner matrices. Preprint at arXiv:1812.10376, 2018.
[9] P. Bourgade, H.-T. Yau, and J. Yin. Local circular law for random matrices. Probab. Theory Related Fields, 159(3-4):545-595, 2014.
[10] B. Dupire. Pricing with a smile. Risk, 7:18-20, 1994.
[11] F. J. Dyson. A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys., 3:1191-1198, 1962. · Zbl 0111.32703
[12] L. Erdős, A. Knowles, H.-T. Yau, and J. Yin. The local semicircle law for a general class of random matrices. Electron. J. Probab., 18:no. 59, 58, 2013.
[13] L. Erdős, T. Krüger, and Y. Nemish. Local laws for polynomials of Wigner matrices. Preprint at arXiv:1804.11340, 2018.
[14] L. Erdős, T. Krüger, and D. Schröder. Random matrices with slow correlation decay. Forum Math. Sigma, 7:e8, 89, 2019.
[15] L. Erdős, B. Schlein, and H.-T. Yau. Local semicircle law and complete delocalization for Wigner random matrices. Comm. Math. Phys., 287(2):641-655, 2009. · Zbl 1186.60005
[16] L. Erdős, B. Schlein, and H.-T. Yau. Universality of random matrices and local relaxation flow. Invent. Math., 185(1):75-119, 2011. · Zbl 1225.15033
[17] L. Erdős and H.-T. Yau. A dynamical approach to random matrix theory, volume 28 of Courant Lecture Notes in Mathematics. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2017.
[18] Y. He, A. Knowles, and R. Rosenthal. Isotropic self-consistent equations for mean-field random matrices. Probab. Theory Related Fields, 171(1-2):203-249, 2018. · Zbl 1392.15048
[19] J. Huang and B. Landon. Rigidity and a mesoscopic central limit theorem for Dyson Brownian motion for general \(\beta\) and potentials. Probability Theory and Related Fields, Nov 2018.
[20] J. O. Lee and K. Schnelli. Edge universality for deformed Wigner matrices. Rev. Math. Phys., 27(8):1550018, 94, 2015. · Zbl 1328.15051
[21] D. B. Madan and M. Yor. Making Markov martingales meet marginals: with explicit constructions. Bernoulli, 8(4):509-536, 2002. · Zbl 1009.60037
[22] L. A. Pastur. The spectrum of random matrices. Teoret. Mat. Fiz., 10(1):102-112, 1972.
[23] T. Tao. Topics in random matrix theory, volume 132 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012. · Zbl 1256.15020
[24] P. von Soosten and S. Warzel. The phase transition in the ultrametric ensemble and local stability of Dyson Brownian motion. Electron. J. Probab., 23:no. 70, 24, 2018. · Zbl 1409.60025
[25] P. von Soosten and S. Warzel. Delocalization and continuous spectrum for ultrametric random operators. Ann. Henri Poincaré, 20(9):2877-2898, 2019. · Zbl 07101915
[26] P. von Soosten and S. Warzel. Non-ergodic delocalization in the Rosenzweig-Porter model. Lett. Math. Phys., 109(4):905-922, 2019. · Zbl 1408.60012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.