On inverse eigenvalue problems of quadratic palindromic systems with partially prescribed eigenstructure. (English) Zbl 1427.65051

Summary: The palindromic inverse eigenvalue problem (PIEP) of constructing matrices \(A\) and \(Q\) of size \(n \times n\) for the quadratic palindromic polynomial \(P(\lambda) = \lambda^2 A^{\star} + \lambda Q + A\) so that \(P(\lambda)\) has \(p\) prescribed eigenpairs is considered. This paper provides two different methods to solve PIEP, and it is shown via construction that PIEP is always solvable for any \(p (1 \leq p \leq (3n+1)/2)\) prescribed eigenpairs. The eigenstructure of the resulting \(P(\lambda)\) is completely analyzed.


65F18 Numerical solutions to inverse eigenvalue problems
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
15A24 Matrix equations and identities
15A29 Inverse problems in linear algebra


Full Text: DOI Euclid


[1] M. Al-Ammari, Analysis of Structured Polynomial Eigenvalues Problems, Phd thesis, The University of Manchester, Manchester, UK, 2011.
[2] Z. Bai, M. Chen and X. Yuan, Applications of the alternating direction method of multipliers to the semidefinite inverse quadratic eigenvalue problem with a partial eigenstructure, Inverse Problems 29 (2013), no. 7, 075011, 27 pp. · Zbl 1280.65036
[3] Z.-J. Bai, D. Chu and D. Sun, A dual optimization approach to inverse quadratic eigenvalue problems with partial eigenstructure, SIAM J. Sci. Comput. 29 (2007), no. 6, 2531-2561. · Zbl 1154.65312
[4] L. Batzke and C. Mehl, On the inverse eigenvalue problem for \(T\)-alternating and \(T\)-palindromic matrix polynomials, Linear Algebra Appl. 452 (2014), 172-191. · Zbl 1288.65045
[5] Y. Cai and J. Qian, On some inverse eigenvalue problems of quadratic palindromic systems, arXir:1606.03840v1.
[6] D. Chu, M. Chu and W.-W. Lin, Quadratic model updating with symmetric, positive definiteness, and no spill-over, SIAM J. Matrix Anal. Appl. 31 (2009), no. 2, 546-564. · Zbl 1194.65060
[7] E. K.-W. Chu, T.-M. Hwang, W.-W. Lin and C.-T. Wu, Vibration of fast trains, palindromic eigenvalue problems and structure-preserving doubling algorithms, J. Comput. Appl. Math. 219 (2008), no. 1, 237-252. · Zbl 1141.74025
[8] —-, Palindromic eigenvalue problems: a brief survey, Taiwanese J. Math. 14 (2010), no. 3A, 743-779. · Zbl 1198.65066
[9] M. T. Chu, B. Datta, W.-W. Lin and S. Xu, Spillover phenomenon in quadratic model updating, AIAA J. 46 (2008), no. 2, 420-428.
[10] M. T. Chu, Y.-C. Kuo and W.-W. Lin, On inverse quadratic eigenvalue problems with partially prescribed eigenstructure, SIAM J. Matrix Anal. Appl. 25 (2004), no. 4, 995-1020. · Zbl 1070.65024
[11] M. T. Chu, W.-W. Lin and S.-F. Xu, Updating quadratic models with no spillover effect on unmeasured spectral data, Inverse Problems 23 (2007), no. 1, 243-256. · Zbl 1107.93003
[12] B. N. Datta and V. Sokolov, A solution of the affine quadratic inverse eigenvalue problem, Linear Algebra Appl. 434 (2011), no. 7, 1745-1760. · Zbl 1211.65047
[13] G. H. Golub and C. F. Van Loan, Matrix Computations, Third edition, Johns Hopkins Studies in the Mathematical Science, Johns Hopkins University Press, Baltimore, MD, 1996.
[14] C. H. Guo and W.-W. Lin, Solving a structured quadratic eigenvalue problem by a structure-preserving doubling algorithm, SIAM J. Matrix Anal. Appl. 31 (2010), no. 5, 2784-2801. · Zbl 1215.65066
[15] N. J. Higham, F. Tisseur and P. M. Van Dooren, Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems, Linear Algebra Appl. 351 (2002), 455-474. · Zbl 1004.65045
[16] A. Hilliges, Numerische Lösung von quadratischen Eigenwertproblemen mit Anwendung in der Schienendynamik, Diplomarbeit, Technical University Berlin, Inst. Für Mathematik, Germany, 2004.
[17] A. Hilliges, C. Mehl and V. Mehrmann, On the solution of palindromic eigenvalue problems, in: 4th European Congress on Computational Methods in Applied Sciences and Enginnerings (ECCOMAS), Jyväskylä, Finland, 2004.
[18] I. C. F. Ipsen, Accurate Eigenvalues for Fast Trains, SIAM News 37, SIAM, Philadelphia, 2004.
[19] D. Kressner, C. Schröder and D. S. Watkins, Implicit QR algorithms for palindromic and even eigenvalue problems, Numer. Algorithms 51 (2009), no. 2, 209-238. · Zbl 1181.65054
[20] P. Lancaster, Model-updating for self-adjoint quadratic eigenvalue problems, Linear Algebra Appl. 428 (2008), no. 11-12, 2778-2790. · Zbl 1145.15012
[21] R.-C. Li, W.-W. Lin and C.-S. Wang, Structured backward error for palindromic polynomial eigenvalue problems, Numer. Math. 116 (2010), no. 1, 95-122. · Zbl 1213.65063
[22] L. Lu, T. Wang, Y.-C. Kuo, R.-C. Li and W.-W. Lin, A fast algorithm for fast train palindromic quadratic eigenvalue problems, SIAM J. Sci. Comput. 38 (2016), no. 6, A3410-A3429. · Zbl 1352.65121
[23] L. Lu, F. Yuan and R.-C. Li, A new look at the doubling algorithm for a structured palindromic quadratic eigenvalue problem, Numer. Linear Algebra Appl. 22 (2015), no. 3, 393-409. · Zbl 1363.65097
[24] D. S. Mackey, N. Mackey, C. Mehl and V. Mehrmann, Vector spaces of linearizations for matrix polynomials, SIAM J. Matrix Anal. Appl. 28 (2006), no. 4, 971-1004. · Zbl 1132.65027
[25] —-, Structured polynomial eigenvalue problems: Good vibrations from good linearizations, SIAM J. Matrix Anal. Appl. 28 (2006), no. 4, 1029-1051. · Zbl 1132.65028
[26] —-, Numerical methods for palindromic eigenvalue problems: computing the anti-triangular Schur form, Numer. Linear Algebra Appl. 16 (2009), no. 1, 63-86. · Zbl 1224.65099
[27] C. Schröder, Urv decomposition based structured methods for palindromic and even eigenvalue problems, TU Berlin Germany, Preprint 375 (2007).
[28] —-, Palindromic and Even Eigenvalue Problems-analysis and Numerical Methods, Ph.D dissertation, Technical University Berlin, Germany, 2008. · Zbl 1213.65065
[29] S. Zaglmayr, Eigenvalue Problems in SAW-Filter Simulations, Diplomarbeit, Institute of Computational Mathematics, Johannes Kepler University Linz, Austria, 2002.
[30] K. Zhao, L. Cheng, S. Li and A. Liao, A new updating method for the damped mass-spring systems, Appl. Math. Model. 62 (2018), 119-113.
[31] K. Zhao, L. Cheng and A. Liao, Updating \(\star \)-palindromic quadratic systems with no spill-over, Comput. Appl. Math. 37 (2018), no. 5, 5587-5608. · Zbl 1413.65112
[32] K. Zhao and G. Yao, Application of the alternating direction method for an inverse monic quadratic eigenvalue problem, Appl. Math. Comput. 244 (2014), 32-41. · Zbl 1335.15020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.