×

Remarks on natural differential operators with tensor fields. (English) Zbl 1513.58003

Summary: We study natural differential operators transforming two tensor fields into a tensor field. First, it is proved that all bilinear operators are of order one, and then we give the full classification of such operators in several concrete situations.

MSC:

58A32 Natural bundles

References:

[1] Čap, A.; Slovák, J., On multilinear operators commuting with Lie derivatives, Ann. Global Anal. Geom. 13 (1995), 251-279 · Zbl 0832.58002 · doi:10.1007/BF00773659
[2] Frölicher, A.; Nijenhuis, A., Theory of vector-valued differential forms, I, II, Nederl. Akad. Wetensch. Proc. Ser. A 59 (1956), 338-350, 351-359 · Zbl 0079.37502 · doi:10.1016/S1385-7258(56)50047-9
[3] Kolář, I.; Michor, P. W.; Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, 1993 · Zbl 0782.53013
[4] Krupka, D.; Janyška, J., Lectures on Differential Invariants, Folia Fac. Sci. Nat. Univ. Purkynianae Brunensis, Brno, 1990 · Zbl 0752.53004
[5] Salimov, A., On operators associated with tensor fields, J. Geom. 99 (2010), 107-145, DOI: 10.1007/s00022-010-0059-6 · Zbl 1229.53012 · doi:10.1007/s00022-010-0059-6
[6] Schouten, J. A., On the differential operators of first order in tensor calculus, Rapport ZA 1953-012, Math. Centrum Amsterdam (1953), 6 pp · Zbl 0052.38204
[7] Schouten, J. A., Ricci-Calculus: An Introduction to Tensor Analysis and Its Geometrical Applications, 2nd ed., Springer-Verlag Berlin, Heidelberg, 1954 · Zbl 0057.37803
[8] Yano, K.; Ako, M., On certain operators associated with tensor fields, Kodai Math. Sem. Rep. 20 (1968), 414-436 · Zbl 0167.19702 · doi:10.2996/kmj/1138845745
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.